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Foreword

Little do we pause in our every day life, to wonder how the microwave oven works, what

happens with the gasoline as our automobile takes us places, how our computer instantly sends

e-mails half-way across the world, or what lies behind the magic of modern medicine. Even

less attention do we pay to the discoveries preceding these ’modern marvels’ which make our

lives safer, faster, better.

Even though these days the compass is mostly encountered as a keychain, a thousand years

ago it became a ubiquitous navigation instrument. It took a few more centuries until Dr. W.

Gilbert’s ”De Magnete” explained the ability of the compass needle to point north on the basis

that the Earth itself was magnetic. A few centuries later, electricity and magnetism were linked

to each other, and numerous discoveries related to electromagnetism followed: the electric force

and the capacitor, Galvani’s discovery of electrical current, the resistance and the inductance,

Morse’s electric telegraph, the great discovery by Faraday of electromagnetic induction, the DC

motor, followed by the invention of the now omni-present telephone, incandescent light, Tesla’s

alternating current motor, the wireless telegraph invented by Marconi, and so on. These were

accompanied by the theoretical developments of Kirchoff’s laws, Coulomb’s laws, Maxwell’s

equations of the electromagnetic field, Einstein’s theory of relativity.

At the dawn of the twentieth century, the magnetic properties of the rare earth elements

were discovered. Later, Spedding’s production of pure rare earth single crystals, together

with the developing neutron scattering experiments, allowed for the progressive elucidation of

the magnetic structures of the rare earths. A standard model of rare earth magnetism was

formulated, followed by the development of the Ruderman-Kittel-Kasuya-Yoshida (RKKY)

description of the exchange interaction between the local moments of the rare earths. Stevens
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invented his operator equivalents method for the treatment of crystal field effects, the primary

source of magnetic anisotropy in rare earth-based materials. These are only a few of the early

steps that led to our understanding of the apparently complex magnetism of the rare earths.

An example of the great impact of magnetism on our society is the development of per-

manent magnets, particularly in the last couple of centuries: the Alnico magnets (aluminium,

cobalt and nickel-based alloys) were the first modern permanent magnets; the cobalt-platinum

magnets had improved properties over the Alnico’s, and corrosive resistance, being ideal can-

didates for biomedical applications. Next, various iron oxides were fabricated and widely used

as commercial magnets in the last decades. Rare earth-based hard magnets were later dis-

covered (SmCo5 [1966], Sm2Co17 [1972], and Nd2Fe14B [1984]), of which the Sm-based ones

were rather costly, but the Nd-based ones are currently widely used, especially in applications

where miniaturisation is an important design criteria.

Motivated by the anticipated complexity of the properties of rare earth compounds, the

present work represents a small step into the ongoing investigation of magnetism of such

systems.
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CHAPTER 1. Introduction

Rare earth intermetallic compounds provided rich grounds for investigating the proper-

ties of both local moment and strongly correlated, hybridized moment systems. These areas

have been intensively explored mostly on cubic and tetragonal intermetallic compounds, and

relatively less work existed on materials with lower symmetry. Moreover, a large number of

Ce-based heavy fermion compounds have been studied, whereas the analogous Yb-based ones

are much rarer. We thus wanted to study local moment metamagnetism and Yb-based heavy

fermion physics in hexagonal systems, i.e., still with relatively high symmetry, but with added

complexity compared to the more symmetric cubic or tetragonal compounds.

The Fe2P structure class of hexagonal compounds allowed us to perform such studies on

both local moment and strongly correlated, hybridizing moment systems. Two ternary series of

compounds (RAgGe and RPtIn) belonging to this family particularly attracted our attention.

Having a ZrNiAl-type crystal structure, an ordered variant of the aforementioned Fe2P family,

each of the two series displays complex physical properties. In addition they provide two

related examples of how these properties arise as an effect of the hexagonal crystal structure

with the rare earths in orthorhombic point symmetry.

The magnetic RAgGe (R = Tb - Lu) and the RPtIn (R = Y, Gd - Lu) compounds display

anisotropic temperature and field dependent magnetization due to the crystalline electric field

(CEF) splitting of the Hund’s rule ground state multiplet. In the former series, this strong

CEF anisotropy confines the magnetic moments along the c-axis in TbAgGe; across the series,

this is followed by a progression towards an almost isotropic case for the R = Ho member,

whereas for R = Er - Yb the easy axis lies in the ab-plane, with TmAgGe being extremely

anisotropic. In the RPtIn series, no strong anisotropy in the paramagnetic state is observed
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for the R = Gd member, whereas TbPtIn is extremely anisotropic, with planar magnetization,

very similar to the case of TmAgGe.

Antiferromagnetic ordering can be inferred for most of the RAgGe compounds, with values

of TN between 28.5 K for TbAgGe, and 1.0 K for YbAgGe. DyAgGe appears to be the only

exception, by showing a ferromagnetic component of the magnetization parallel to the c axis.

However, for all of the above RAgGe compounds, their ordering temperatures scale fairly well

with the deGennes factor dG = (gJ -1)2 J (J + 1), where gJ is the Landé g factor, and J is the

total angular momentum of the R3+ ion Hund’s rule ground state: the anticipated behavior for

rare earth intermetallic compounds. A more curious behavior occurs across the RPtIn series,

where the ordering temperatures for all magnetic compounds also scale well with the deGennes

factor: TbPtIn and TmPtIn have larger planar than axial susceptibilities in the paramagnetic

state, and order antiferromagnetically around 46 K, and 3 K respectively, whereas the ordered

states in the R = Gd, Dy - Er compounds have axial ferromagnetic components. Although,

at a first glance, these appeared as rather unusual discontinuities for a magnetically ordering

local moment series, we show (in Chapter 7) that the hexagonal crystal structure of these

compounds, with three R ions in the unit cell occupying unique orthorhombic point symmetry

sites, is of crucial importance in explaining the moment configurations and magnetic ordering

in these RPtIn materials.

The anisotropic M(H) measurements of the RAgGe systems indicate one or more meta-

magnetic transitions when the external field is applied in the c direction (for R = Tb) or

perpendicular to it (for R = Ho - Tm), or even in both orientations as is the case of DyAgGe.

No evident metamagnetic transitions can be observed in the ferromagnetic RPtIn compounds,

but they exist in the two antiferromagnetic ones: TbPtIn and TmPtIn.

TmAgGe and TbPtIn represent special examples of complex metamagnetism, very similar

despite the different rare earth ions and different ligands in the two compounds. Due to their

extreme planar anisotropy, the nature of the magnetic order changes abruptly, with both the

magnitude and the orientation of the applied field even within the basal plane. This allowed us

to perform a study of the angular dependent planar magnetism in each of the two compounds,
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and also to determine net distribution of the magnetic moments using the three co-planar

Ising-like systems model.

The YbAgGe and YbPtIn compounds have some properties distinct from the rest of their

respective series. YbAgGe has a low magnetic ordering temperature (∼ 1 K) and an enhanced

electronic specific heat coefficient 150 mJ/mol K2 ≤ γ ≤ 1000 mJ/mol K2. The magnetic

entropy at 1 K is only 5 % of the expected R ln 2 for a ground state doublet, suggesting

small moment ordering in this compound. All these observations, and detailed Cp(T, H) and

ρ(T, H) measurements allow us to classify YbAgGe as new stoichiometric, Yb-based heavy

fermion material with a magnetic field-induced quantum critical point QCP. Furthermore,

Hall resistivity measurements are consistent with the presence of a QCP in this material, and

indicate that YbAgGe behaves similarly to other heavy fermion materials, and is very similar

to the extensively studied YbRh2Si2 (Trovarelli, 2000; Gegenwart 2002; Ishida 2002; Paschen

2003; Paschen 2004).

A more complex situation is encountered in the case of YbPtIn, given the observed site-

disorder that occurs in the flux-grown single crystals of this material. The small Pt-deficiency

in the flux-grown crystals greatly affects the magnetic transition temperatures and the critical

field values, in comparison with the analogous values for the stoichiometric, on-line grown

YbPtIn single crystals. However, both these systems exhibit enhanced electronic specific heat

coefficients (γ ≥ 550 mJ/mol K2), quantum critical point and non-Fermi liquid like behavior

at low temperatures outside the ordered state, very similar to the YbAgGe and YbRh2Si2

compounds. Having an even higher ordering temperature (TN = 2.1 K for the Pt-deficient

system, and 3.4 K for the ordered one) and magnetic entropy at TN about 0.6∗R ln 2, YbPtIn

seemed a good candidate to further study this progression from small towards reduced moment

ordering in Yb-based heavy fermion compounds, with field-induced quantum critical point.

This work will be presented as follows: first I will review the physics of rare earth inter-

metallic compounds, including magnetism and magnetic ordering, de Gennes scaling, crystal

electric field CEF effects, metamagnetism, heavy fermions and quantum criticality. Next I will

introduce the motivation for studying hexagonal compounds, in particular the Fe2P-type ones,
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with hexagonal unit cell and three rare earth ions sitting at sites with orthorhombic point sym-

metry. The following chapter is dedicated to details of crystal growth from high-temperature

solution, with emphasis on the particular procedures used for growing the RAgGe and RPtIn

single crystals; it also includes a review of the measurement techniques used in characterizing

these systems. Chapter 5 presents a thorough compound-by-compound analysis of the ba-

sic thermodynamic and transport properties of the RAgGe series, along with a discussion of

trends across the series. Chapter 6 will be dedicated to the study of the angular dependent

metamagnetism in TbPtIn and TmAgGe; the measured data is presented by comparison to the

three co-planar Ising-like systems model, and the features common to the two compounds will

be emphasized. An appropriate version of this model, enhanced to three dimensions, is than

introduced in an attempt to explain the unusual trends of the magnetic ordering across the

RPtIn series, which are discussed compound by compound, in the following chapter. Chapters

8 and 9 present the YbAgGe, and the YbPtIn and YbPt0.98In heavy fermion systems respec-

tively, all of which exhibit field-induced quantum critical points. A final chapter will attempt

to summarize the results of this work, and outline directions for further investigations.
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CHAPTER 2. Overview of physics of Rare Earth Compounds

2.1 General properties

2.1.1 4f Electrons and Local Moment Magnetism

The starting point for the understanding of the rare earths’ magnetism is the description

of their electronic state, particularly of the 4f electrons. The rare earth ions are almost always

trivalent, with the exception of some which can also be di- or tetra-valent. All of the trivalent

rare earth ions are comparable in size, with virtually identical outermost electron shells with the

5s25p6 configuration. As a result, their chemical properties are fairly similar. Even in metals,

the 4f core retains its integrity and its atomic properties. Therefore, series of compounds can

often be synthesized, which differ only in the choice of lanthanide element. This valuable

ability allows for systematic studies of the physics of rare earth intermetallic compounds. By

studying a whole series of compounds, the effects of the crystal electric field CEF, interactions

between ions, and other physical characteristics may be separated from each other. Finally, the

analysis of trends across the series aids in the understanding of the physics of the individual

members.

Fig. 2.1 shows the radial densities of the electrons of the Gd3+ free ions (or Gd3+ ions in

hard insulators). As seen in the figure, the 4f electrons are much more localized than the 5s,

5p, and 6s electrons. Furthermore, these 4f electrons are shielded by the completely filled 5s2

and 5p6 shells. Therefore, the 4f electrons may be considered part of the electronic core, not

directly interacting with the rest of the electronic system. Since a partially filled 4f shell will

have a large magnetic moment, it is imperative to determine the electronic configuration of

the 4f electrons. However, this picture needs to be changed in the case of metals, to include
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the effect of the Fermi level position on the radial extent of the electronic orbitals.

 

 

Figure 2.1 Radial densities of the electrons of Gd from Hartree-Fock cal-
culations (after Taylor, 1972).

2.1.2 Hund’s Rules

The total spin S, total orbital momentum L and total angular momentum J quantum

numbers are crucial for the theoretical determination of the magnetic properties of a material.

In the case of the rare earth ions, their values are determined by the ground state configuration

of the 4f electrons. For a given angular momentum l, there are 2l + 1 possible values for lz,

and 2 possible spin orientations for each lz. This results in a multiply degenerate ground

state, with a total of 2 (2l + 1) possible states. However, most of this degeneracy is lifted

by electron-electron Coulomb interaction and through spin-orbit coupling (Mattis, 1981), such

that the ground state configuration of a partially filled shell will then be governed by Hund’s
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rules (Ashcroft, 1976):

• The ground state has the largest value of total spin S that is consistent with the exclusion

principle.

• For the maximum possible S value, the electrons are distributed between all possible

states in accordance with the exclusion principle, and such that the resulting L value is

maximum.

• For shells that are less than half-filled, the total angular momentum is given by J =

| L− S |. For shells that are more than half-filled, J = | L + S |.

Using these rules, the quantum numbers of for the lanthanide ions can be determined, and

they are shown in Table 2.1. Now that the components of angular momenta are known for

the local moments, it is possible to formulate many aspects of the theory of magnetism in rare

earth intermetallic compounds.

Table 2.1 Components of the angular momenta L, S, J, and the calculated
values of the Landé g factor (gJ = 3

2 + 1
2

[
S(S + 1)−L(L + 1)

J(J + 1)

]
),

saturated moment (Msat = gJ J µB), effective moment (peff =
gJ [J(J+1)]1/2), and de Gennes factor (dG = (gJ − 1)2 J(J+1))
for the trivalent magnetic rare earth ions.

R L S J gJ Msat peff dG
Ce 3 0.5 2.5 0.857 2.14 2.54 0.19
Pr 5 1 4 0.800 3.20 3.58 0.80
Nd 6 1.5 4.5 0.727 3.27 3.62 1.84
Pm 6 2 4 0.600 2.40 2.68 3.20
Sm 5 2.5 2.5 0.286 0.71 0.84 4.46
Eu 3 3 0 – – – –
Gd 0 3.5 3.5 2.000 7.00 7.94 15.75
Tb 3 3 6 1.500 9.00 9.72 10.50
Dy 5 2.5 7.5 1.333 10.00 10.64 7.08
Ho 6 2 8 1.250 10.00 10.61 4.50
Er 6 1.5 7.5 1.200 9.00 9.58 2.55
Tm 5 1 6 1.167 7.00 7.56 1.17
Yb 3 0.5 3.5 1.142 4.00 4.54 0.32
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2.1.3 Curie law

In general, the contribution of a magnetic moment in an applied field to the total energy is

simply the Zeeman term, E = − µB H · (L + g0 S), where µB = e h̄ / 2 m c ≈ 5.79 ∗ 10−8

eV / G is the Bohr magneton, and g0 = 2 [1 + α / 2π + O(α2) + · · ·] ≈ 2 is the

electronic g-factor (α = e2/h̄c ≈ 1/137). This is typically very small compared to all the

other energy scales in the system, and therefore the effect of the applied field can be computed

as a small perturbation. In order to derive the susceptibility of a system, a second derivative of

the energy with respect to field, second-order perturbation theory must be used, where terms

up to second order in H are retained in the expansion of energy:

∆En(H) = µBH · 〈n | L + g0 S | n〉 +
∑

m6=n

| 〈n | µB H · (L + g0 S) | m〉 |2
En − Em

(2.1)

The second term in eq.(2.1) yields the Van Vleck paramagnetic susceptibility (Ashcroft

and Mermin, 1976), which is typically small in the rare earth ions with partially filled f-shells.

When the first term is non-zero (i.e., for J 6= 0), it dominates the energy correction; in this

case, the ground state energy can be written in a simpler form by using the Wigner-Eckart

theorem:

〈JLSJz | L + g0 S | JLSJ ′z〉 = gJ(JLS)〈JLSJz | J | JLSJ ′z〉 (2.2)

where gJ is the Landé g-factor, which can be computed as (taking g0 to be exactly 2):

gJ(JLS) =
3
2

+
1
2

[
S(S + 1)− L(L + 1)

J(J + 1)

]
. (2.3)

This allows us to determine the magnetization of a system with N ions occupying a volume

V, as:

M = − N

V

∂F

∂H
(2.4)

where F is the free energy of the system with only the lowest 2J + 1 states being thermally

excited with appreciable probability; using eq.(2.3), and the free energy F given by
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e−βF =
J∑

Jz=−J

e−β(gJµBH)Jz , β =
1

kB T
(2.5)

the above magnetization becomes:

M = − N

V
gJµBJBJ(βgJµBJH) (2.6)

where BJ(x) is the known Brillouin function.

In the low temperature limit (kB T ¿ gJ µB H), the magnetization reaches its saturation

value (i.e., each moment is completely aligned with the field and | Jz | = J):

Msat = gJµBJ. (2.7)

These gJ and Msat values are summarized in Table 2.1 for all trivalent rare earth ions,

together with the S,L and J quantum numbers of their Hund’s rules ground states. This

information is useful in the analysis of new rare-earth intermetallic compounds, since it allows

the theoretical saturated moments to be compared to the measured values. Under certain

circumstances, this comparison may then be used to determine the amount of rare earth

element present in an unknown compound. In addition, knowledge of the theoretical saturated

moment may also be used to identify easy and hard magnetic axes arising from the crystalline

electric field, discussed below. Finally, this theoretical result may allow an estimate of the

net distribution of moments in materials exhibiting metamagnetic transitions, which will be

discussed in detail in Chapter 6.

When we analyze the temperature-dependence of the magnetization (2.6) in the high tem-

perature limit (kB T À gJ µB H), one can determine the molar susceptibility as:

χ =
∂M

∂H
= NA

(gJµB)2

3
J(J + 1)

kBT
=

C

T
. (2.8)

This variation of the susceptibility as the inverse of temperature is also known as Curie’s

law, where the Curie constant C can be written as a function of the ”effective Bohr magneton

number” peff :
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C = NA
(gJµB)2

3
J(J + 1)

kB
= NA

p2
effµ2

B

3kB
. (2.9)

2.1.4 Curie-Weiss law

The above Curie law has been derived within the hypothesis of negligible interactions

between the magnetic moments; within mean field theory, these interactions are taken into

account by considering that, in addition to the external applied field H, an effective field Heff

acts on each local moment. Such an effective field arises from the thermal average of the

surrounding moments, and is proportional to their magnetization M: Heff = αM .

Consequently, since the temperature-dependent magnetization follows Curie’s law (2.8),

the magnetization in this case will result from the equation:

M =
C

T
(H + Heff) =

C

T
(H + αM). (2.10)

Solving for M and the susceptibility, one gets the Curie-Weiss law:

χ =
C

T − αC
=

C

T + θW
. (2.11)

where θW = αC representing the paramagnetic Weiss temperature. From its proportionality

to α, the Weiss temperature comes out to be of the form:

θW ∝ S(S + 1)
k2

B

. (2.12)

Like the saturated moment, this result is extremely useful in the characterization of new

rare earth intermetallic compounds, since at high temperatures, the slope of a plot of the inverse

susceptibility (1/χ) versus temperature is the Curie constant C. From the determination of

the Curie constant, the molar mass of the measured compound may be calculated if gJ and J

are known from the choice of the rare earth element in the compound. The theoretical values

of the effective Bohr magneton values are listed in Table 2.1, together with the other already

mentioned characteristic quantities for the rare earth ions.



13

2.1.5 deGennes scaling

Another important outcome of the mean field theory is the scaling of the Weiss temperatures

θW with what is known as the de Gennes factor dG:

dG = (gJ − 1)2J(J + 1). (2.13)

The Weiss temperature θW given by 2.12 can be expressed in terms of the total angular

momentum of the 4f-electrons, J, by making use of the Wigner-Eckart theorem (2.2): replacing

the S (S + 1) term in (2.12) with 1
3 (gJ − 1)2J(J + 1) yields an equivalent form for θW :

θW ∝ 1
3

(gJ − 1)2J(J + 1)
k2

B

∝ dG
1

3 k2
B

, (2.14)

Within mean field theory, the Curie temperature TC (for ferromagnetic ordering) or Néel

temperature TN (for antiferromagnetic order) are given by the magnitude of the Weiss tem-

perature; consequently the magnetic ordering temperatures are also expected to scale with the

de Gennes factor.

The values of the de Gennes factor for each rare earth ion are listed in Table 2.1; since

this is largest for Gd, compounds containing this element can be expected to have the highest

ordering temperature. Likewise, compounds containing Pr, or Tm, should order magnetically

at much lower temperatures.

2.1.6 The RKKY interaction

As can be inferred from Fig. 2.1, the overlap between the 4f-orbitals of neighboring rare

earth sites is extremely small, drastically reducing the possibility for direct exchange interaction

between the rare earth ions. Therefore in metals the primary interaction between the magnetic

moments is indirect, via the polarization of the conduction electrons. Specifically, the localized

spin of the 4f electrons interacts with the spin of the conduction electrons, resulting in a

polarization of the conduction electrons. This polarization then interacts with the spin of the

4f electron localized on another rare earth ion. This is known as the Ruderman-Kittel-Kasuya-

Yoshida (RKKY) interaction. This interaction is long-range and oscillatory, and can couple
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the spins either ferromagnetically or antiferromagnetically, depending on the ions’ separation

and the shape of the Fermi surface. This type of exchange was first proposed by Ruderman

and Kittel (1954) and later extended by Kasuya (1956) and Yosida (1957).

The interaction between two magnetic moments at positions Ri and RJ is characterized

by a coupling constant J given by

J(Ri −RJ) ∼ F (2kF | Ri −RJ |), (2.15)

where kF is the Fermi wavevector, and F(x) is given by (Elliott 1972):

F (x) =
x cosx− sinx

x4
. (2.16)

-0.002

0.000

0.002

0.004

0.006

x
642

F(x) = (x cos x - sin x) / x4

 

 

F(
x)

Figure 2.2 The polarization of the conduction electrons via the RKKY
interaction (where x = 2 kF | Ri −RJ |).

The RKKY exchange coefficient J oscillates from positive to negative as the separation of
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the ions changes, and has the damped oscillatory nature shown in Fig. 2.2. This yields an

indirect exchange energy of the form:

E =
9n2πΓ2

2EF

∑

i6=j

Si · SJ F (2kF | Ri −RJ |) (2.17)

where n is the average density of conduction electrons, Γ represents the interaction constant

and EF is the Fermi energy. At low temperatures, kBT is less than E, and the exchange

interaction between the local moments will dominate, causing the magnetic sublattice to order

magnetically. Depending on the values of kF and Ri −RJ, the exchange between neighboring

moments may be positive or negative, which will result in ferromagnetic or antiferromagnetic

ordering, respectively.

2.1.7 Crystal Electric Field

2.1.7.1 Overview of Crystal Electric Field CEF effects

Together with the interactions between the magnetic moments, the crystal electric field

CEF effect greatly affects the magnetic properties of the rare earth ions, once they are placed

in solids. In particular, the CEF is responsible for lifting some or all of the degeneracy of Hund’s

rule ground state multiplet at low temperatures. In transition metals, where the unfilled 3d-

shell is the outermost shell, this effect is very large; however, in the rare earth elements where

the 4f shell is screened and highly localized, the crystal field splitting is relatively small and

may be treated as a perturbation of the ground state (Hutchings, 1964).

If the surrounding k ions are treated as point charges at positions Ri, the resulting total

potential at the rare earth site is the sum of all potentials from such point charges:

V (r) =
∑

i

qi

| r−Ri | . (2.18)

After expanding V(r) in Legendre polynomials Pm
n (cos θ), and expressing it more conve-

niently in the tesseral harmonics Znm:
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Zc
nm =

[
2n + 1

2
(n−m)!
(n + m)!

] 1
2

Pm
n (cos θ)

cosmϕ√
π

Zs
nm =

[
2n + 1

2
(n−m)!
(n + m)!

] 1
2

Pm
n (cos θ)

sinmϕ√
π

(2.19)

the above potential becomes:

V (r, θ, ϕ) =
∑
n

∑
α

rnγc,s
nαZc,s

nα(θ, ϕ)

where γc,s
nα =

k∑

i=1

4π

2n + 1
qi

Zc,s
nα(θi, ϕi)
Rn+1

i

.

(2.20)

This potential function should reflect the point symmetry of the lattice site r. Consequently,

the number of non-vanishing terms in the CEF potential is limited (i.e., the more symmetric

the site, the fewer terms occur in the above expansion). Particularly terms with n > 2 l,

where l is the orbital quantum number, vanish; thus for the 4f electrons (l = 3), the expansion

of the CEF potential (2.20) can only include terms up to n = 6.

Since the effects of the CEF are small in rare earth ions compared to the spin-orbit coupling,

the potential (2.20) may be treated as a perturbation to the free-ion states. In principle, the

eigenvalues of the CEF states may be found by diagonalizing the matrix elements of this

potential.

2.1.7.2 Stevens’ Equivalent Operators

A much simpler method to calculate the effect of the CEF potential is to introduce the

Stevens equivalent operators. It has been shown (Stevens, 1952) that the matrix elements of the

crystal field Hamiltonian (2.20) are proportional to a set of operators containing components

of the total angular momentum, J.

To illustrate the method, we consider the CEF Hamiltonian given by:

HCEF = − | e | V (r) = − | e |
∑

i

V (xi, yi, zi). (2.21)
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If the system of coordinates is chosen such that the coefficients γs
nα of the Zs

nα (2.20) are

zero, then the CEF potential (2.20) can be rewritten as:

V (r) =
∑

i

∑
nm

f c
nm(xi, yi, zi) ≡

∑
nm

θn 〈rn〉 Om
n (2.22)

where θn are the multiplicative factors depending on l, and Om
n are Stevens’ equivalent oper-

ators, which are tabulated for the most common n and m values. Thus the CEF hamiltonian

in this representation becomes:

HCEF =
∑
nm

[Am
n 〈rn〉 θn] Om

n ≡
∑
nm

Bm
n Om

n . (2.23)

where Am
n = γc

nm ∗ (− | e |).
The energy splitting of the Hund’s rule multiplet may now be calculated by applying the

operators and diagonalizing the matrix elements.

HoNi2B2C (Cho, 1996a; Gasser 1996) serves as a great example to illustrate the applicabil-

ity of the Stevens’ operators method to determine the CEF parameters in a highly anisotropic

tetragonal system, with the rare earth occupying a tetragonal point symmetry position. As

can be seen in Fig. 2.3a,b, this compound is extremely anisotropic, with larger susceptibility

values for H ‖ ab. Moreover, the field-dependent magnetization (Fig. 2.3c) is indicative of

in-plane anisotropy, with the [110]-equivalent directions being the easy axes.

Using a CEF Hamiltonian of the form:

HCEF = B0
2 O0

2 + B0
4 O0

4 + B4
4 O4

4 + B0
6 O0

6 + B4
6 O4

6, (2.24)

where the Om
n are Stevens equivalent operators, the CEF parameters Bm

n have been deter-

mined from from fitting the inverse susceptibility data of HoxLu1−xNi2B2C (Fig. 2.3c). Fig.

2.4 shows the CEF level scheme calculated from the above Bm
n parameters. However, the

thermodynamic properties used for the determination of these parameters are less sensitive to

the higher temperature details of the CEF level structure. Therefore Gasser et al. (Gasser

1996) refined the above CEF parameters to higher energies, by performing inelastic neutron

scattering experiments.
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Figure 2.3 Inverse anisotropic susceptibility values for (a) HoNi2B2C
and (b) HoxLu1−xNi2B2C (x ≈ 0.024) (symbols); (c)
Field-dependent magnetization curves for H applied within the
basal plane, along the high symmetry directions: H ‖ [110]
(full symbols) and H ‖ [100] (open symbols); the lines in (a)
are Curie-Weiss fits to the data above 250 K, whereas in (b)
and (c) the CEF calculations, using Stevens’ operators method,
are shown as solid curves. (Cho, 1996a)

In addition to the specific example shown for tetragonal point symmetry of the magnetic

moment, more general calculations of the energy splitting of the Hund’s rule multiplet have

also been performed in detail for cubic symmetry (Lea, 1962; Taylor,1972). A method to

numerically fit the crystal field parameters to experimental data is outlined in MacKeown and

Newman (1987). However, the number of available calculations for lower point symmetries is

very limited, due to the enhanced degree of difficulty in finding unique level schemes for the
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Figure 2.4 Crystalline electric-field energy levels for Ho3+ ions in
HoNi2B2C. (Cho, 1996a)

CEF energy splitting, when large number of terms of the Hamiltonian (2.23) are involved in

the calculation.

2.1.8 Characteristics of rare earth intermetallic compounds via thermodynamic

and transport measurements

Having understood the basic properties of rare earth intermetallic compounds, it is useful

to see how they are inferred, in practice, from measurements of various thermodynamic and

transport properties.
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2.1.8.1 Low-field magnetic susceptibility

In section 2.1.4 we saw that, for high temperatures, the susceptibility of magnetically

ordered rare earth compounds is given by Curie-Weiss law (2.11). In addition, section 2.1.7

showed that CEF effects lead to magnetocrystalline anisotropy, which is reflected in anisotropic

susceptibility curves measured for field along the three crystallographic directions. Having

samples in single crystal form allows one to measure the anisotropic susceptibilities χa (H‖a),

χB (H‖b) and χc (H‖c); a polycrystalline average susceptibility χave can then be calculated:

χave =
χa + χb + χc

3
, (2.25)

which, in turn, can be used to determine the effective moment µeff for a given compound.

For high-symmetry compounds (i.e., for which two [tetragonal or hexagonal] or all three

[cubic] crystallographic directions are equivalent), it suffices to measure the susceptibility along

the non-equivalent directions. An example is shown in Fig. 2.5, illustrating the anisotropic

molar susceptibility curves for a tetragonal or hexagonal compound, with an antiferromagnetic

ground state. In this case, measurements parallel (χab) and perpendicular (χc) to the basal

plane can be used to calculate the polycrystalline average susceptibility as:

χave =
2 ∗ χab + χc

3
. (2.26)

The susceptibility of an antiferromagnetic compound features a fairly sharp peak around

the Neél temperature TN , as seen in Fig. 2.5a. The Neél temperature TN can be exactly

determined (Fisher, 1962) from the peak position in d(χT )/dT , which is expected to follow the

temperature dependence of the specific heat, as well as that of dρ/dT (Fisher, 1968). From

(2.11) it follows that the inverse high-temperature susceptibility is linear in temperature:

1
χ

=
T

C
+

θW

C
, (2.27)

as can be seen in Fig. 2.5b. Linear fits 1/χ = a T + b to the high-temperature inverse

susceptibility (dotted lines Fig. 2.5b) allow us to experimentally determine the coefficients a
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Figure 2.5 Anisotropic (a) susceptibility and (b) inverse susceptibility
curves, for an antiferromagnetic tetragonal or hexagonal sys-
tem. The dotted line in (a) marks the ordering temperature
TN , whereas in (b) the dotted lines are extrapolations to 1/χ

= 0 of the high-temperature data, from which the anisotropic
Weiss temperatures θW (indicated by arrows) are determined.

and b for each orientation of the field, and for the calculated polycrystalline average. According

to (2.27), these coefficients can be identified as: a ≡ 1/C and b ≡ θW /C. Using the

expression (2.9) for the Curie constant C, the experimental ”effective Bohr magneton” peff can

be calculated from the a coefficient corresponding to the polycrystalline average data:

a =
1
C

=
3 kB

NA p2
eff µ2

B

therefore peff =

√
3 kB

NA µ2
B

1
a
≈

√
8
a
. (2.28)
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The resulting value can then be compared with the theoretical one for the respective rare

earth ion, listed in Table 2.1. In the calculated polycrystalline average susceptibility, the CEF

anisotropy effects average out (Boutron, 1973; Dunlap, 1983), which is the reason for using the

these susceptibility data to estimate peff .

In a similar manner, the b-coefficients can be used to determine the anisotropic Weiss

temperatures θW :

a =
1
C

and b =
θW

C
, therefore θW =

b

a
. (2.29)

The θW temperatures, determined as described above, are indicated by small arrows in

Fig. 2.5, for the two field directions, as well as for the calculated polycrystalline average. It is

readily apparent from the above figure, that the θW temperatures are expected to be negative

for antiferromagnetic compounds. In the case of ferromagnetic materials, similar calculations

can be performed, with the θW temperatures expected to be positive. The one other noticeable

difference apparent in the susceptibility measurements is that the Curie temperature TC is less

clearly defined, as a fairly rapid increase in χ(T ) is expected around the ordering temperature.

2.1.8.2 Specific heat

For both ferromagnetic and antiferromagnetic compounds, specific heat measurements

(solid line in Fig. 2.6a) typically feature a well-defined peak at the transition temperature,

allowing for a fairly accurate determination of Tord. Moreover, in crystalline, metallic com-

pounds, the low-temperature specific heat is dominated by the free electrons contribution,

which is linear in T (Cel
p = γ ∗ T ), and the lattice contribution, which is proportional to T3.

Thus the low-T specific heat can be written as:

Cp = γ T + β T 3 or Cp/T = γ + β T 2. (2.30)

Plotting the specific heat in Cp/T vs. T2 coordinates (Fig. 2.6b) allows for the determi-

nation of both the electronic specific heat coefficient γ (by extrapolation of the linear region

down to T = 0) and the phonon term coefficient β (as the slope of the linear Cp/T (T 2)).
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Figure 2.6 (a) Low-temperature specific heat data Cp for a magnetically
ordered compound (solid line), with the non-magnetic contri-
bution (dotted line). (b) Cp/T vs. T2 used to determine the
electronic specific heat coefficient γ, the phonon specific heat
coefficient β and the Debye temperature ΘD. (c) The low-T
magnetic specific heat, plotted as Cm/T (T ), from which the
magnetic entropy Sm(T ) (inset) can be determined.
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Typically, the γ values are ≈ 1 mJ/mol K, but they can be 2 to 3 orders of magnitude larger

in compounds known as heavy fermions (see Section 2.3). By using the β coefficient, the Debye

temperature ΘD can be estimated using the Debye model result for the phonon specific heat

Cph
p :

Cph
p = β T 3 ≡ 12π4

5
n kB

(
T

ΘD

)3

, (2.31)

where n is the number of phonons.

Additional information about magnetically ordered compounds can be extracted from the

magnetic specific heat Cm. For rare earth compounds with magnetism due only to the rare

earth ions, the R = Y, La and Lu compounds are non-magnetic. Within the Debye model,

their specific heat provides fairly good approximations for the non-magnetic contribution to

the specific heat of the magnetic compounds (shown as dotted line in Fig. 2.6a), and Cm can

be estimated as:

Cm(T ) = Cp(magn)(T ) − Cp(non−magn)(T ). (2.32)

The integration of Cm/T (T ) from 0 up to a given temperature allows us to estimate the

magnetic entropy, over the same temperature range. In turn, the magnetic entropy released at

Tord is indicative of the degeneracy n of the ground state multiplet, where n can be estimated

from:

Sm(Tord) ≈ R ln n, where R is the universal gas constant. (2.33)

2.1.8.3 Resistivity

Measurements of the transport properties of new materials frequently corroborate the find-

ings of thermodynamic measurements, but their analysis is typically more difficult than that

of magnetization or specific heat. Much of this complexity may be removed through the use

of Mathiessen’s rule, which states that the total resistivity of a compound is the sum of the

individual components of the resistivity (Fig. 2.34):
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Figure 2.7 Temperature-dependent resistivity of a metallic compound.

ρ = ρimp + ρe−ph + ρs−dis + ρe−e (Ziman, 1967), where: (2.34)

• ρimp is the term due to scattering off of impurities, dominant at low temperatures and

T-independent; the residual resistivity ratio (RRR) of a sample, defined as the ratio of

the room-temperature resistance to the resistance extrapolated to 0 K [ρ(300K)/ρ(0K)],

or the ratio of ρ(300K) to the resistivity at the lowest measured temperature (e.g.,

ρ(300K)/ρ(1.8K) in many cases) is an indication of the sample quality (lower residual

resistivity yields larger RRR, suggesting better sample quality).

• ρe−ph: electron-phonon is the dominant scattering process at high temperatures, and this

resistivity term increases linearly with temperature;

• ρs−dis arises from the electrons scattering off of the disordered local magnetic moments

in the paramagnetic state (ergo the name of spin-disorder scattering); as the temperature

is lowered through Tord (Fig. 2.34), a sudden decrease in the resistivity occurs due to

the loss of this spin-disorder.
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• ρe−e is the electron-electron scattering term, which is quadratic in T; this term is negli-

gible around room temperature, and also rapidly decreases as T approaches 0.

2.2 Metamagnetism

2.2.1 General considerations

The concept of metamagnetism was first introduced to describe a field-induced, first-order

phase transition from an antiferromagnetic state with low magnetization, to a ferromagnetic

state characterized by high magnetization (see Gignoux, 1995, and references therein, for a

review). This is driven by the lowering of the total energy of a system via the application

of an external magnetic field. Extensive studies of metamagnetic phase transitions have been

performed in the past decades, as this concept has been extended to describe not only single-

step transitions, but all types of field-induced magnetic phase transitions.

Currently a metamagnetic transition refers to any ”anomalous” magnetization with an

upward curvature upon increasing field, as opposed to ”normal” magnetic behavior (i.e.,

Brillouin-like), which exhibits downward curvature. Two classes of metamagnetic transitions

can be distinguished:

• a sharp (step-like) transition, where the jump in magnetization occurs at almost constant

field (Fig. 2.8a);

• a S-shaped transition where the critical field value is associated with an inflection point

of the M(H) curve (Fig. 2.8b).

Class 1 transitions are often associated with first-order phase transitions; also, these tran-

sitions are typically sharper at low temperatures, and they broaden as temperature is raised,

often evolving into class 2 transitions. One given compound may feature both types of meta-

magnetic transitions on the same M(H) isotherm, or at different temperatures.

Demagnetizing field effects are also responsible for the broadening of the metamagnetic

phase transitions. To illustrate this, we consider a simplified picture of an ellipsoidal sample
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Figure 2.8 Schematic representation of (a) a discontinuous (class (1)), and
(b) a continuous (class (2)) metamagnetic transition.

placed in an external applied field Hext; however, due to the magnetization of the sample, the

effective internal field experienced by the magnetic ions is reduced to Hint:

Hint = Hext − NdM = Hext − Hd (2.35)

where Nd and Hd are the demagnetizing factor, and the demagnetizing field respectively, de-

pendent on the shape of the sample, and the direction of the applied field. In the case of a

first-order phase transition without any hysteresis, at the critical field value of the internal

field Hc,int the magnetization should jump discontinuously from MA to MB (dotted line in Fig.

2.8a). However, the transition can not proceed all at once since, according to eq.(2.35), an

increase in magnetization would lead to a decrease in Hint below the critical value; therefore

the transition must take place at increasing field values, such that

δM

δHext
=

1
Nd

. (2.36)

The resulting magnetization curve has an inclined portion around the transition (solid line in

Fig. 2.8a), with a slope inversely proportional to the demagnetizing factor Nd.

The critical field values Hc are generally temperature dependent, and thus each compound
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may be characterized by H - T phase diagram. Moreover, these critical values (Hc or Tc), and

consequently the H - T phase diagrams, may vary with the orientation of the applied field

relative to the crystallographic directions. This is often a direct consequence of the magne-

tocrystalline anisotropy effect playing an essential role, together with the exchange interactions,

in the occurrence of metamagnetism. Strong crystal electric field effects CEF may constrain

the magnetic moments to a certain direction (axial anisotropy) or within a given plane (pla-

nar anisotropy). Furthermore, the magnetic moments may be constrained to a number of

non-collinear easy axes, like the two-fold axes in tetragonal or hexagonal symmetry, or the

three-fold axes in cubic symmetry; other such plausible examples are the four-fold axes in

tetragonal, or six-fold axes in hexagonal compounds. Weak or intermediate anisotropy may

also occur in some systems, leading to the magnetic moments lying anywhere in space.

2.2.2 Different types of metamagnetic phase transitions

Systems where the CEF is the only effect acting on the 4f-shell represent a simple case of

metamagnetism. The metamagnetism in such materials occurs because of what is known as

level-crossing. For example, as a magnetic field is applied, the excited (i.e., J = 1 in Fig. 2.9)

states split into field-dependent states (except for the Jz = 0 one). Of these, a subset (i.e.,

the Jz = 1 state) lower their energy as field increases; as a consequence, level-crossing occurs

between a low-energy (EJ,Jz = E0,0) and a high-energy state (EJ,Jz = E1,1), giving rise to a

metamagnetic transition with critical field value Hcrit given by:

E0,0 = E1,1, or ε0 = ε1 - g µB Hcrit.

Multiple transitions of this type may, in theory, occur. Examples of compounds for which

CEF level-crossing has been theoretically predicted include TmSb (Cooper, 1966), and was

experimentally observed in TmSb (Nimori, 1995), Pr metal (McEwen, 1973) and PrNi5 (Ball,

1992).

The level-crossing case considered above corresponds to a paramagnetic system; the meta-

magnetic behavior is greatly complicated when long range magnetic ordering is also considered.

Particularly in ferromagnetic compounds, metamagnetic transitions occur as the magnetic
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Figure 2.9 The energy levels of an ion with L = 0 and S = 1, in the
paramagnetic state: (a) no magnetic field is applied (excited
state is degenerate); (b) the degeneracy of the J = 1 state is
lifted by the applied magnetic field H, and level-crossing occurs
at H = Hcrit.

field is applied parallel to the hard axis (Gignoux, 1995). The transitions are associated with

the rotation of the magnetic moments from the easy axis towards the direction of the field, and

are typically related to the sudden change of the magnetization at a critical field Hc. Numerous

systems show this type of metamagnetism, with RZn, RAl2, RRu2 being only a few examples

(Gignoux, 1995, and included references).

The case of simple antiferromagnets is of particular interest for studies of metamagnetism,

since it often can be understood in terms of simple theoretical models.

A special case of metamagnetism may occur in Gd-based antiferromagnetic compounds,

which are expected to be isotropic in the paramagnetic state. However, small anisotropy

(mainly of exchange origin) may exist in such compounds, which fixes the zero-field orientation

of the magnetic moments in the ordered state. In low applied fields, a spin-flop transition may

occur, during which the magnetic moments rotate toward a direction perpendicular to the
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applied field. This is a result of the higher perpendicular susceptibility compared to the one

for field along the moments’ direction. A few examples of Gd-based compounds displaying

metamagnetic transitions are GdCu6 (Takayanagi, 1989), GdCu2 (Borombaev, 1987), GdGa2

(Ball, 1993).

As already mentioned in the case of Gd compounds, the susceptibility perpendicular to

the moments’ direction is larger than the one parallel to it in all rare earth antiferromagnetic

compounds. Thus there is a tendency of the moments to align perpendicular to the field

direction, even in the case of field initially applied parallel to them. However, for non-Gd based

compounds, this effect competes with the magnetocrystalline anisotropy, and, depending on

its relative magnitude compared to the exchange energy, two cases can be distinguished:

• for small anisotropy energy, and field parallel to the direction of the moments, when H

becomes higher than a critical value the moments flop over to a configuration almost

perpendicular to the field. This results in a step in the magnetization; as the field is

subsequently increased, the moments continuously rotate towards the direction of the

field until saturation is reached.

• in the case of strong anisotropy, for fields parallel to the antiferromagnetic direction,

magnetization remains in the same direction. As the field is increased beyond a critical

value, some of the magnetic moments antiparallel to the field flip over to becoming paral-

lel. Several such steps can be observed in the magnetization curves, until the field-induced

saturated state is reached after all moments have been flipped from their antiparallel to

the parallel position.

When field is applied perpendicular to the direction of the moments, the magnetization

increases slowly with field towards the saturation value. However, small fields are necessary

to reach the saturated state in the case of small CEF anisotropy (and for cases where this is

the dominant anisotropy effect), whereas in the large CEF anisotropy limit, the saturation is

achieved for fields comparable to the CEF splitting.

Numerous extremely anisotropic systems displaying metamagnetic transitions are currently
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known; we can enumerate a few where only two metamagnetic transitions have been observed

(DyCo2Si2 [Iwata, 1990], ErGa2 [Doukouré, 1982], CeZn5 [Gignoux, 1987]). More recently a

number compounds have been shown to have several more complex metamagnetic transition,

and they are discussed in some detail in the next section.

2.2.3 Metamagnetic transitions in tetragonal compounds with magnetic moments

in tetragonal point symmetry

One simple case of an extremely anisotropic antiferromagnetic compound is that of TbNi2Ge2

(Bud’ko, 1999), a tetragonal compound with Tb ions in tetragonal point symmetry. At low

temperatures, the crystalline electric field (CEF) anisotropy confines the local moments along

the c ([001]) crystallographic axis (Ising-like system). Up to six metamagnetic transitions are

observed, with the critical field values Hci,j having a 1/ cos θ dependence on the angle between

the applied field H and the c-axis. It is also shown that the locally saturated magnetization val-

ues vary like Mi,sat ∗ cos θ, and from the Mi,sat values, the net distribution of moments for each

metamagnetic state can be inferred. Both of these angular dependencies are a consequence of

the extremely axial nature of the CEF splitting of the TbNi2Ge2 ground state.

A more complex situation is encountered when the magnetic moments are allowed more

degrees of freedom , i.e. when the CEF anisotropy constrains them to an easy plane. This

is the case in the tetragonal compounds RNi2B2C (Cho, 1996b; Canfield, 1997a,b), with R =

Tb - Er, and RAgSb2 (Myers, 1999a) for R = Dy. The R ions are again in tetragonal point

symmetry and the local moments are confined to four equivalent [110] or [100] crystallographic

directions; thus the angular dependent magnetization measurements, when the field is applied

in the basal plane, reveal the four-fold anisotropy of the longitudinal magnetization that reflects

the symmetry of the unit cell. The angular dependencies of the locally saturated magnetiza-

tions Mi,sat and the critical fields Hci,j could be treated by simple analysis, and plausible net

distribution of moments could be inferred for each metamagnetic phase (Canfield, 1997a,b).

As an example, Fig. 2.10a shows a subset of the M(H) T = 2 K isotherms, for various orienta-

tions of the applied field within the basal plane. Up to three metamagnetic transitions can be
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Figure 2.10 (a) HoNi2B2C M(H) different field orientations within the
ab-plane; (b) H - theta phase diagram, with measured data
(symbols) and theoretical calculations (lines) based on the
four-position clock model. (Canfield, 1997b)

observed, and their corresponding critical field values Hci,j are shown as symbols in Fig. 2.10b

as a function of the angle θ (with θ being measured from the closest [110] easy direction).

Kalatsky and Pokrovsky (1998) elaborated the four-position clock model, which arises di-

rectly from the fact that strong CEF anisotropy confines the magnetic moments to four non-

collinear directions (i.e., to ↑ −→ ↓ ←− positions). The angular dependencies of Mi,sat and

Hci,j calculated based on the above model are described by cos(θ ± ϕj), and 1 / cos(θ ± ϕj)

respectively, with ϕj = 00, 450 or 900. These values are integer or half-integer multiples of

3600 / n, where n = 4 in our tetragonal system. As can be seen in Fig. 2.10b for Hci,j, these

calculations agree well with the experimentally determined critical field values in HoNi2B2C;

DyAgSb2 (Myers, 1999a) is another extremely planar tetragonal system with the rare earth

ions in tetragonal point symmetry, which is well-described by the same model.
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2.3 Heavy fermion compounds

2.3.1 Single ion Kondo effect

Before discussing the heavy fermion systems and their physical properties, it is appropriate

to introduce the Kondo problem of a single-magnetic impurity embedded in a non-magnetic

host. The extension of this model to the dense Kondo system (i.e., a Kondo lattice) will lead

to additional features, especially at low temperatures, but at intermediate temperatures the

properties of the Kondo lattices are well-described within the single-ion picture.

A local minimum in the temperature-dependent resistivity of a dilute magnetic alloy (e.g.,

of Cu, Ag, Au with Cr, Mn or Fe impurities) has been observed experimentally since 1930

(Meissner, 1930). The first theoretical explanation of this minimum (Kondo, 1964) was based

on the magnetic impurities which act as scattering centers, hybridizing with the conduction

electrons, and leading to the screening of the local moments. Kondo’s analysis gives a loga-

rithmic divergence of the low-T resistivity due to magnetic scattering, which competes with

the monotonically decreasing phonon contribution as the temperature is lowered. Whereas

this picture yields the experimentally observed minimum in resistivity, experimentally the

resistivity showed finite values at the lowest temperature, unlike the predicted logarithmic

divergency. This constitutes the Kondo problem, and various models have been developed

as attempts to account for the observed features down to very low temperatures. One solu-

tion to the aforementioned Kondo problem (Yoshimori, 1976; Mihály 1978) yields a quadratic

temperature-dependence of the resistivity at very low temperatures, qualitatively illustrated

in Fig. 2.11a: the logarithmic increase as the temperature decreases is observed down to a

characteristic Kondo temperature TK , emphasized by the vertical dashed line. Below TK ,

the resistivity shows a quadratic saturation as T → 0. The Kondo temperature TK separates

the local moment regime (T À TK) from the compensated magnetic moment regime at low

temperatures.

The calculated susceptibility for a diluted Kondo system (Wilson, 1975) yields a cross-over

from a quasi-free behavior of the magnetic moments at T À TK , to a bound state for T ¿
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Figure 2.11 Low-temperature behavior of (a) resistivity, (b) susceptibility
and (c) specific heat of a diluted Kondo system

TK (Fig. 2.11b). A full quenching of the magnetic moment in the low temperature regime

manifests as a weakly T-dependent susceptibility below TK .

Rajan (1983) calculated the specific heat of a single-impurity system, and the result is

sketched in Fig. 2.11c: a maximum occurs in Cp around a characteristic temperature T0,

which is typically slightly higher than TK . For diluted systems, the low-temperature specific
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heat was shown to be linear in T (Desgranges, 1982). The entropy associated with the impurity

contribution tends, for very high temperatures, to R ln 2.

2.3.2 Physical properties of heavy fermions

The heavy fermion materials are a subset of the f-electron intermetallic compounds, asso-

ciated with multivalent (e.g., capable of hybridizing) rare earth ions, like Ce, Yb and U, and

to lesser extent Sm and Eu, and they can be described in terms of a Kondo lattice model.

At high temperatures (T > TK), their observed properties may be described based on the

single-impurity picture. The relevant physics for the heavy fermions occur at low temper-

atures, where the local moment is partially or totaly compensated. Their electronic specific

heat coefficient γ is anomalously large in the low temperature limit, with correspondingly large

Pauli paramagnetic susceptibility χ. The ratio of the magnetic susceptibility to the electronic

specific heat coefficient in the limit T → 0 K, the so-called Wilson-Sommerfeld ratio R =

(π2k2
B/µ2

eff)(χ(0)/γ(0)), is unity in the case of non-interacting electrons; for heavy fermion

systems this ratio is typically closer to 2.

At high temperatures, these compounds exhibit local moment behavior, as indicated by

Curie-Weiss susceptibility with Curie constant corresponding to that of the Hund’s rule ground

state of the f element. The resistivity at high temperature is typical of metallic compounds

(∼ 100 µΩ cm), but often less temperature dependent than for their non-hybridizing neighbors

(i.e., for R = Tm or Lu in the case of Yb-based compounds). A prominent sign of a Kondo

lattice state is the fact that, at low temperatures (T < TK), ρ(T ) rapidly decreases with

temperature, and for very low temperatures (i.e., below a ”coherence temperature” T∗), it

becomes quadratic in T, characteristic of Fermi-liquid like FL behavior.

As the temperature is lowered, in local moment systems the R ln 2 entropy (for a CEF dou-

blet ground state) is being removed by magnetic ordering; in the limit of strongly correlated,

heavy fermion systems (with no magnetic order), the R ln 2 entropy is released continuously be-

low the Kondo temperature (where the magnetic moment is quenched). An interesting behavior

is anticipated in-between these extreme cases: around a critical value (J N(EF ))crit of the J
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N(EF ) parameter, there is a competition between the long-range magnetic order of the uncom-

pensated moments and the low-temperature compensated state (Doniach, 1977a), as illustrated

in Fig. 2.12. The exchange interaction between the magnetic moments is characterized by the

RKKY temperature TRKKY ∝ J2N(EF ); the Kondo temperature TK ∝ e−1/|J |N(EF ) in-

creases faster than TRKKY , resulting in a local maximum in the ordering temperature TN

(Fig. 2.12), followed by a drop in TN around J N(EF ))crit. This may lead to a quantum phase

transition at T = 0, with the possibility of tuning the parameter J N(EF ) via a number of

control parameters (substitution, pressure, magnetic field). Whereas substitution is a discon-

tinuous tuning parameter (pressure being essentially discontinuous as well), the magnetic field

offers the advantage that it can be varied continuously.
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Figure 2.12 Doniach’s phase diagram.

2.3.3 Quantum critical phase transitions in heavy fermions

As already mentioned, it is believed that the Kondo lattice picture describes the non-

magnetic ground state, large quasiparticle effective mass (manifested through enhanced γ val-
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ues) and curious temperature dependence of the resistivity of heavy fermion compounds (Hew-

son, 1997). This model describes how the local moment is screened out or partially compen-

sated as the temperature falls below a characteristic Kondo temperature TK = D e1/(N(EF )J),

where D is the conduction electrons band width, N(EF ) is the density of states at the Fermi

level, and J is the local spin-conduction electron coupling. A competition between the low-

temperature compensated state and the magnetically ordered state of the uncompensated

moments is obvious and points toward the possibility of quantum critical phase transitions.

In contrast to a classical phase transition at finite temperatures, driven by temperature

as a control parameter with thermal fluctuations, a quantum phase transition is driven by a

control parameter C other than temperature (e.g., C = pressure, doping or magnetic field)

at T = 0, with quantum mechanical fluctuations. Such a control parameter tunes the system

from a magnetically ordered state towards a (magnetically) disordered state, at zero temper-

ature, crossing a quantum critical point. Due to the hybridization of the 4f electrons and the

conduction electrons in heavy fermion HF systems, which can be modified by any one of the

aforementioned control parameters, the HF compounds are very suitable to study quantum

critical behavior. Moreover, close to the critical value Ccrit which drives the ordering temper-

ature close to zero, pronounced deviations from the Fermi liquid-like FL behavior can occur.

This has been observed in a large number of HF systems where C = doping or pressure, and

only a few doped systems have been field-tuned through a QCP (Stewart 2001). YbRh2Si2

(Trovarelli, 2000; Gegenwart, 2002; Ishida, 2002; Paschen, 2003; Paschen, 2004) was the first

stoichiometric Yb-based HF compound in which a field-induced quantum critical point QCP

has been observed, with only two more such compounds (subject of this study), YbAgGe [Bey-

ermann, 1998; Katoh, 2004; Morosan, 2004; Bud’ko, 2004; Bud’ko 2005] and YbPtIn [Morosan

2005a], known to date.

Non-Fermi liquid like NFL behavior can often be observed in HF systems undergoing a

quantum phase transition. Experimentally, such NFL behavior involves logarithmic diver-

gence of the specific heat C/T ∼ − ln T , and linear temperature dependence of the resistivity

∆ρ ∼ T at the lowest temperatures, and for intermediate field values (i.e., just above the
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critical field of the QCP). For higher fields, the Fermi-liquid state is typically recovered, as the

low-T resistivity becomes quadratic in T.
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CHAPTER 3. Hexagonal intermetallic compounds

3.1 Search for hexagonal RE-compounds with planar metamagnetism

Initially thought to be improbable, angular dependent metamagnetism in extremely planar

systems is now an accepted and understandable event in tetragonal compounds (Canfield,

1997a,b; Budko, 1999; Myers, 1999a); but this has not yet been well studied in hexagonal

compounds. This was the motivation for the extensive search for hexagonal compounds suitable

for a similar study of angular dependent metamagnetism. We embarked on a search for single

crystals of compounds with unique crystallographic site for the rare earth ions and ordered

ligand sites. In addition, the compound needed to have extremely planar magnetization with

distinct in-plane metamagnetic transitions.

Our numerous attempts to grow single crystals of such systems had mixed results, and they

are summarized in Table 3.1. These are only a fraction of the hexagonal compounds which

could potentially meet the criteria for our proposed study. As it is readily apparent from the

table, we succeeded in growing single crystals of the right phase for a limited number of series

we tried, of which very few met our criteria: the R2Zn17, RTSn (T = Ag, Au), RGa2 did not

show extreme planar anisotropy or anisotropy within the basal plane; TbAuIn was extremely

planar, with high TN (∼ 35 K), but we could not optimize the growth to completely eliminate

the growth of a second phase (TbAu3).

The growths of RPtIn and RAgGe produced well-formed single crystals. Since all of the

existing reports on these two series were based on polycrystalline samples (Baran, 1998; Gibson,

1996; Watson, 1995; Zaremba, 2001), we have expanded the synthesis of single crystals to

include most of their heavy rare earth members, R = Y, Gd - Lu for RPtIn, and R = Tb - Lu

for the RAgGe series. The heavy RAgGe and RPtIn compounds are stoichiometric materials,
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crystallizing in the hexagonal ZrNiAl structure, space group P 6 2 m, # 189. This represents

an ordered variant of the Fe2P family, having three rare earth ions in the unit cell positioned at

unique sites with orthorhombic point symmetry (m 2 m). Anisotropic physical properties and

the existence of metamagnetic transitions in many of these compounds rendered the two series

as very interesting for a study of local moment physics. Moreover, the Yb members of both

RAgGe and RPtIn series appeared to be promising heavy fermion compounds for studying the

properties of strongly correlated electron systems.

Table 3.1 Summary of attempted growths of hexagonal compounds with
unique R site having different point symmetries.

Compound Archetype Point Results
Symmetry

RCuSn AlB2 Hexagonal Unidentified phases
RNi3Al9 ErNi3Al9 Trigonal No crystals; unidentified phase
R2X 17 Th2Ni17/ α/β reported phases, one with 2 R sites

(X = Zn,Fe, Th2Zn17 Hexagonal in unit cell;
Co) ferromagnetic ground state for X = Fe, Co

RInZn CaIn2 Hexagonal R2Zn17 or RIn3 (cubic)
RGa2 LiGaGe Trigonal No/Reduced in-plane anisotropy
RTSn Hexagonal plates, no in-plane anisotropy

(T = Ag, Au)
RCuSi InNi2 Trigonal Unidentified phases
RPt2In YPt2In Hexagonal RPt (orthorhombic); dendritic crystals

(unidentified)
RAl2Ge2 La2O3 Trigonal RAlGe (orthorhombic)
RAlNi MgZn2 Trigonal No crystals; unidentified phase
RT In T = Pt: TbPtIn

(T = Au,Cu, T = Au: two phases (RAuIn and RAu3)
Ni,Pd,Pt,Rh) Fe2P Orthorhombic T = Cu,Ni,Pd,Rh: Cubic crystals

RAgX (ZrNiAl) X =Ge: TmAgGe
(X = Ge,Mg, X = Mg: R3Ag4Mg3; RAg2

Pb) X= Pb: R5Pb4; unidentified phases

Two isostructural compounds, TbPtIn and TmAgGe, met the requirements for our de-

sired study of angular dependent metamagnetism: unique rare earth site, ordered ligands,

extremely planar magnetization, and in-plane anisotropy and metamagnetism. These obser-

vations, combined with our experience with the four position clock model that was developed
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for the tetragonal compounds with rare earths in tetragonal symmetry, lead us to propose a

similar model for these Fe2P-type compounds: the three co-planar Ising-like systems model,

which consists of three Ising-like moments per unit cell, with their Ising axes within the basal

plane and rotated by 600 with respect to each other.

3.2 Fe2P-type hexagonal compounds

3.2.1 RAgGe

The RAgGe compounds (R = Y, Sm, Gd - Lu) have been reported by Gibson et al.

(Gibson, 1996) to crystallize in the hexagonal ZrNiAl-type structure. We were able to grow

most of these compounds in single crystalline form, with the exception of YAgGe, SmAgGe

and GdAgGe. Attempts to grow the former two compounds out of solution failed to yield

any crystals, whereas trying to grow the Gd member of this series, we obtained Gd3Ag4Ge4

(Morosan, 2004).

 

Figure 3.1 (a) Crystal structure of RMX compounds, with R = rare earth,
M = Ge, Pt and X = Ag, In; (b) projection along the c-axis,
with R-large purple and M-medium green circles, from the z=0
R3M layers, and M-small green and X-small orange circles from
the z=0.5 M2X3 layers.

The crystal structure (Fig. 3.1) of the RAgGe compounds can be viewed as alternating

R3Ge and Ag3Ge2 layers stacked along the c axis, shown as a c-axis projection in Fig. 3.1b.
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The atomic positions are given in Table 3.2 for DyAgGe.

Table 3.2 Atomic positions of DyAgGe (Gibson, 1996)

Wyckoff site x y z
R 3f 0.5827 0 0

Ge(1) 2d 1/3 2/3 1/2
Ge(2) 1a 0 0 0
Ag 3g 0.2493 0 1/2

In Fig. 3.2, the volume and the dimensions of the unit cell across the series are shown

as a function of the R3+ ionic radii. Both the a and the c lattice parameters decrease as the

series progresses towards heavier rare earths, resulting in the expected lanthanide contraction

[Shannon, 1976], indicated by the dotted line on Fig. 3.2a. Throughout the series the a/c

ratio is nearly a constant 1.7. YbAgGe falls close to the monotonic decrease of the unit cell

parameters, consistent with the Yb ion being essentially trivalent at room temperature in this

compound. In Table 3.3 the values of the lattice parameters and the unit cell volume are

explicitly given.

Table 3.3 Lattice parameters, the a/c ratio and cell volumes of the RAgGe
series of compounds. (Morosan, 2004)

R a(Å) c(Å) a/c Vol (Å3)
Tb 7.13 4.22 1.691 185.75
Dy 7.09 4.20 1.690 182.93
Ho 7.08 4.18 1.693 181.39
Er 7.07 4.17 1.694 180.55
Tm 7.06 4.15 1.702 178.77
Yb 7.06 4.15 1.701 178.92
Lu 7.03 4.13 1.703 176.46
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Figure 3.2 Unit cell volumes and lattice parameters for RAgGe, R = Tb -
Lu as a function of R3+ ionic radius (bottom axis) or rare earth
(upper axis).

3.2.2 RPtIn

All members of the RPtIn series have been reported to form with the aforementioned

ZrNiAl-type structure (Ferro, 1974; Galadzhun, 2000; Zaremba, 2001), with the exception

of EuPtIn. These crystallographic reports were based on measurements on polycrystalline

samples. We succeeded in growing stoichiometric single crystals of the R = Y, Gd - Tm, Lu



44

members of this series using the flux growth method. In the case of Yb, the solution-grown

crystals had to be grown from a different initial stoichiometry, and this yielded crystals with a

small Pt-deficiency; but single crystals of the stoichiometric YbPtIn system were finally grown

using an on-line melt technique, as described in the ”Crystal growth” section.

Table 3.4 Atomic positions of TbPtIn (Galadzhun, 2000)

Wyckoff site x y z
R 3f 0.4070(2) 0 0

Pt(1) 2d 1/3 2/3 1/2
Pt(2) 1a 0 0 0

In 3g 0.7413(2) 0 1/2

Table 3.4 gives the atomic positions of the TbPtIn member of this series (Galadzhun 2000).

Fig. 3.3 shows the lattice parameters and the unit cell volumes for the RPtIn compounds. Sim-

ilar to the case of RAgGe, the unit cell volume of the RPtIn compounds (Fig. 3.3a) generally

follows the expected lanthanide contraction (as shown by the dotted line), as does (to a lesser

extent) the c lattice parameter (Fig. 3.3b). However an apparent non-monotonic change of

the a parameter is noticeable in Fig. 3.3c, and there is also considerable scattering of the a

and c values determined from the Rietveld refinement using Rietica software. Consequently

the error bars for the lattice parameters and the unit cell volume are also shown.

Table 3.5 Lattice parameters and cell volumes of the flux-grown RPtIn
compounds, R = Gd - Lu (Morosan, 2005b) ((∗) the on-line grown
YbPtIn compound).

R a(Å) c(Å) Vol (Å3)
Gd 7.558 ± 0.018 3.922 ± 0.018 194.01 ± 1.809
Tb 7.556 ± 0.016 3.870 ± 0.020 191.33 ± 1.779
Dy 7.550 ± 0.020 3.845 ± 0.025 189.82 ± 2.240
Ho 7.525 ± 0.025 3.825 ± 0.025 187.59 ± 2.472
Er 7.496 ± 0.026 3.806 ± 0.016 185.22 ± 2.068
Tm 7.535 ± 0.015 3.790 ± 0.010 186.37 ± 1.246
Yb 7.535 ± 0.025 3.768 ± 0.012 185.28 ± 1.180
Yb(∗) 7.548 ± 0.012 3.762 ± 0.010 185.71 ± 1.015
Lu 7.495 ± 0.015 3.760 ± 0.010 182.91 ± 1.231

In addition, the R = Tm and Yb volumes appear to deviate slightly from the monotonic
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Figure 3.3 Unit cell volumes and lattice parameters for RPtIn, R = Gd -
Lu as a function of R3+ ionic radius (bottom axis) or rare earth
(upper axis).

decrease across the series; whereas this could indicate, at least for R = Yb, a trend toward va-

lence 2+ for the rare earth ions, the magnetic measurements were consistent with the presence

of magnetism in the respective compounds, associated with trivalent R ions. Even though a

plausible explanation could lie in the site-disorder observed for the flux-grown YbPtIn system,

it is invalidated first by the fact that the values shown in Fig. 3.3 with the respective error bars
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also encompass the values determined for the ordered YbPtIn compound; secondly, no site-

deficiency could be detected for the other compound that shows comparable deviation from the

lanthanide contraction, namely the TmPtIn system. The values of the lattice parameters and

unit cell volumes are given in Table 3.5, including the ones for the two types of Yb compounds.
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CHAPTER 4. Experimental methods

4.1 Crystal growth

Although polycrystalline samples may be used for preliminary characterization of the physi-

cal properties of new materials, high-purity single crystals are essential for detailed analysis. In

particular, compounds with rare earths in non-cubic point symmetry frequently possess strong

anisotropies of the magnetic properties and electronic structure. In a polycrystalline sample,

the random orientation of the microscopic grains can average out any such anisotropies. In ad-

dition, many measurements require large samples with crystallographically well-ordered, such

as neutron or magnetic X-ray diffraction. The quality of single crystal samples is generally

superior to polycrystalline samples, since single crystals do not possess grain boundaries. The

amount of impurities, which are often present between the grains of polycrystalline materials,

are substantially reduced, due the much smaller surface area to volume ratio of single grain

crystals. In addition, due to rapid cooling and crystallites growing against each other, it is

possible that great amounts of stress and strain are present in polycrystalline materials, and

these are typically reduced in well-formed single crystals.

Numerous techniques are presently employed in order to grow single crystal samples, and

the utility of each varies greatly. Thorough reviews of many of these methods may be found in

Pamplin (1975) and the references therein. Some examples of crystal growth methods include

the Bridgeman, Czochralski and zone refining methods, which are essential to the semicon-

ductor industry since they can produce large, very high purity silicon, germanium and gallium

arsenide single crystals. Unfortunately, most of these methods require the composition of the

melt to be the same or very close to that of the desired product, constraining these methods

to the synthesis of congruently (or near-congruently) melting compounds. Furthermore, the
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starting components must be heated above the melting temperature of the target compound,

which may easily be above the working range of available furnaces and crucibles. Finally,

the vapor pressures of the constituent elements may become appreciable at these very high

temperatures. For instance, the vapor pressures of some of the rare earth elements, such as

samarium, europium and ytterbium, become large at temperatures above 9000C, leading to

chemical reactions with the crucibles as well as a loss of stoichiometry.

One of the most versatile methods which allows for some of the above problems to be

avoided is growth from high-temperature solutions. An extensive overview of many of the

methods of crystal growth from high-temperature solutions may be found in Elwell and Scheel

(1975). The solvent in this high-temperature solution is frequently called a flux, since it

produces lower melting temperatures than those of the starting components. At high temper-

atures, all of the constituent elements are dissolved in the flux. As the temperature of the melt

decreases, the solubility of the target compound decreases, forcing the desired compound to

precipitate out of the solution. For low enough cooling rates, the growth process occurs via a

series of quasi-thermodynamically stable stages, which typically yields crystals relatively free

of strains (Fisk, 1989; Canfield, 1992; Canfield 2001).

4.1.1 Growth of ternary compounds from self-flux

Among the key factors to be considered for an initial flux growth are: an appropriate

solvent for the desired compound, optimal initial concentrations and minimum temperature

for a fully-liquid phase to be reached, as well as the lowest temperatures for which the solvent

is still liquid, after the crystal growth has occurred. The last requirement is mandatory in

order to be able to isolate the grown crystals out of the flux via centrifugal force: spinning off

the flux. Other methods for removing the crystals from the flux would be chemical etch (which

often carries the risk of the etchant attacking the crystals) or mechanical removal of the flux.

It is almost always preferable to use as flux for solution growth excess of one or more of the

constituent elements of the desired compound. One important reason is that, by introducing

no additional elements to the melt, the number of potentially undesired phases that may result
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Figure 4.1 Binary phase diagrams of (a) Dy - Ge (Massalski, 1990), (b)
Dy - Ag (Gschneidner, 1985) and (c) Ag - Ge (Olesinski, 1988).
Note the low eutectic temperature around 75% Ag, and lack of
binary compounds on the Ag - Ge binary phase diagram. (d)
ternary phase diagram of the Dy-Ag-Ge system. The crosses in-
dicate binary compounds as seen in (a)-(c); the large dot marks
the initial composition used for the growth of DyAgGe.
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is reduced. However, it is not always practical to employ the self-flux growth method, because

of too high melting temperatures, or lack of exposed liquidus-solidus surfaces. A number

of elements have been reported to lower the temperature of certain liquid solutions (Canfield,

1992), each of them being a preferred flux when they do not form high-temperature compounds

with elements of the target material.

Numerous binary phase diagrams have been experimentally constructed for many elemental

pairs, and theoretically proposed for others. They provide an initial map of the composition

and temperature space for ternary (or higher) growths, allowing one to estimate the optimal

profile for growing a given material. A much smaller number of ternary phase diagrams, and

only a limited subset of their isothermal cuts, are currently available. When they do exist,

these are also useful tools both for growing binary compounds out of a third elemental flux, or

for self-flux ternary solution growths.

In cases where the ternary phase diagram is not available, the three binary phase diagrams,

pairing each two of the three elements of the desired compound, are often very useful. Such an

example is the growth of DyAgGe out of excess Ag-Ge. The Dy-Ag-Ge ternary phase diagram

is not known, but detailed binary phase diagrams (Dy-Ag, Dy-Ge and Ag-Ge) are available

(Fig. 4.1a-c). No other ternary compounds with Dy, Ag and Ge are reported to date (or with

any other rare earth), but the DyAgGe phase. The lack of ternary phases other the desired

one is advantageous for growing this compound (i.e., there are fewer potential second phases).

In the Ag-Ge diagram (Fig. 4.1c) there is a broad eutectic with composition Ag0.75Ge0.25

at a temperature around 6500C. This was used as the concentration of the flux for several

attempts, as well as a slightly more Ge-rich concentration (around Ag0.60Ge0.40). Based on the

qualitative (crystal size, morphology, amount of residual flux on the surface) and quantitative

(powder x-ray diffraction, resistivity, magnetization) analysis of the resulting crystals, it was

concluded that the eutectic concentration was the optimal initial dilution for growing DyAgGe.

A solution with initial composition of Dy0.09(Ag0.75Ge0.25)0.91 was used to obtain well-formed

hexagonal rods of DyAgGe.

Fig. 4.1d represents a schematic Dy-Ag-Ge ternary phase diagram, showing the reported
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binary compounds (small crosses) and the desired DyAgGe system (black star). The bottom

arrow points to the Ag-Ge eutectic concentration, whereas the starting ternary composition

which was used for the optimal growth is indicated by the large dot.

4.1.2 Experimental Technique for Flux Growth

In most cases, the starting materials were placed inside a 2 ml or 5 ml alumina crucible,

called the ”growth crucible” [Fig. 4.2]. Another crucible, called the ”catch crucible”, is filled

two-thirds full with quartz wool and placed inverted on top of the growth crucible. The

crucibles were subsequently sealed in a quartz ampoule, under partial argon pressure, which

limited the maximum temperature of the growth to 12000 C (when quartz starts to soften).
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Figure 4.2 (a) Temperature profile for the growth of single crystals of
DyAgGe from an Ag-Ge flux. At about 110 hours, the am-
poule is removed from the furnace and the remaining flux is
decanted from the desired crystals. (b) diagram of the ampoule
used for crystal growth (see text).

After allowing the liquid solution to homogenize for a couple of hours at the high tem-

perature, the ampoule is slowly cooled to the desired temperature, at which the flux must be

decanted from the growth crucible. This is done effectively by quickly removing the ampoule

from the furnace and inserting it inverted into a centrifuge. During the spin, the quartz wool
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in the catch crucible acts as a strainer which allows the excess flux to flow to the bottom where

it solidifies, and holds any crystals that may have detached from the growth crucible.

Fig. 4.2 also illustrates the growth profile used for growing most of the RAgGe single

crystals (R = Dy - Tm, Lu). After initially heating the ampoules to ∼ 12000 C, they were

slowly cooled to 8500 - 8250 C. After decanting the excess flux, thin hexagonal rods with the

c-axis along the axis of the rod were obtained. Two noteworthy modifications to this growth

procedure were (i) YbAgGe which was cooled to 7500 C before decanting, and (ii) TbAgGe for

which an initial melt stoichiometry of Tb0.09(Ag0.85Ge0.15)0.91 was necessary for better quality

crystals. A typical hexagonal rod is shown in Fig. 4.3.

 

Figure 4.3 Single crystal of YbAgGe, with approximate dimensions
0.4 × 0.4 × 3.0 mm3. Hexagonal rod geometry evident (three of
the six possible facets are visible here); a few AgGe flux droplets
can be seen on the surface of the crystal.

Similar procedures were used for growing most of the RPtIn single crystals (R = Y, Gd -

Tm, Lu). Initial concentrations were typically RxPtxIn1−2x, with x = 0.05 − 0.10, making

use of the low-melting In as a self-flux. In most cases the ampoules were initially heated up to

∼ 12000 C, and then slowly cooled down to ∼ 8000 C, over 50 to 100 hours. Subsequently,

the excess liquid solution was decanted, and the resulting hexagonal rods were, if necessary,

quickly etched in concentrated HCl to remove residual flux from the surface. Higher decanting
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temperatures (i.e., above 10000 C) were necessary for R = Y, Gd and Er, whereas in the case

of TmPtIn the temperature interval for which best crystals were obtained was lower (between

11000 C to 7500 C). In some cases, the hexagonal rods had hollow channels in the center,

sometimes with flux inclusions. We succeeded in optimizing the growth of TbPtIn by using

faster cooling rates (i.e., 4000 C / 50h); this yielded only well-formed, full, hexagonal rods,

whereas when slowing down the cooling process hollow crystals were obtained together with

full, smaller ones. Slight modifications of the initial concentrations and/or growth profiles for

Dy, Ho or Er didn’t totally eliminate the formation of hollow rods, but 100 % dense samples

could easily be found; however, the cooling rates that gave the best crystals were 4000 C /

100h for R = Dy and Ho, and 2000 C / 100h for R = Er.

4.1.3 Growth of YbPt0.98In and YbPtIn compounds

A drastic modification of the above growth procedure needed to be made in order to grow

the R = Yb member of the RPtIn series out of liquid solution. The best results were obtained

by starting with a Yb0.4Pt0.1In0.5 initial composition. Such a large amount of rare earth is

likely to react with the alumina crucible at high temperatures, and contaminate or alter the

stoichiometry of the melt. Therefore the growth and the catch crucible were replaced in this

case by a tantalum ampoule: one end of a Ta tube was sealed with a cap of the same material.

After placing the constituent element in the Ta crucible, a Ta strainer (a second Ta cap in

which small holes have been drilled) is placed approximately in the middle of the tube. A

third Ta cap is welded on the upper end of this ampoule, resulting in the so-called 3-cap Ta

crucible (Canfield, 2001). This is then sealed in quartz under partial argon atmosphere, to

prevent the oxidation of the Ta tube at high temperatures. The ampoule is heated up to 11900

C, and then slow-cooled to 10000 C over ∼ 100 hours. When the inverted ampoule is placed

in the centrifuge, the empty side of the Ta tube acts as the catch crucible, whereas the strainer

separates the crystals detached from the growth side from the spun flux.

The resulting crystals had a small Pt-deficiency on one of the two Pt sites in the unit cell,

leading to a stoichiometry closest to YbPt0.98In (see Chapter 9 for details).
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Another growth procedure, on-line melt, was also used to produce YbPtIn crystals (Trovarelli,

2000). Polycrystalline samples were prepared by placing stoichiometric amounts of Yb, Pt and

In in a Ta crucible, which was than sealed under Ar atmosphere. The ampoule was than

briefly heated up to 16500 C; after allowing the mixture to homogenize for a few minutes, it

was quickly cooled to room temperature. Subsequently the Ta ampoule was sealed in a quartz

tube, and heated up to 7000 C; the samples were then annealed at this temperature for 120

hours. Numerous small single crystals of YbPtIn (with the exact 1:1:1 stoichiometry in this

case) were visible in the polycrystalline melt, highly intergrown, and mostly embedded in the

solidified matrix. However, a few small rods were extracted from the surface of the matrix.

These samples were shown to be stoichiometric YbPtIn.

This difference in Pt-occupancy between the flux and on-line grown samples is consistent

with YbPtIn having a small width of formation extending towards the Pt-deficient side; given

that the initial melt composition is very Pt-poor (i.e., Yb0.4Pt0.1In0.5), it would be sensitive

to such a small width of formation.

4.2 Measurement methods

4.2.1 Magnetization measurements

Magnetic measurements were performed in a Quantum Design Magnetic Properties Mea-

surement System (MPMS) SQUID magnetometer (T = 1.8 - 350 K, Hmax = 55 or 70 kG).

Since for these measurements, the samples were manually aligned with respect to as-grown

facets or edges, it was important to have well-formed, clean single crystals. This required large

crystals to be used, whereas the upper limit of the calibrated range of the MPMS instrument

(i.e., 1.25 emu) restricted us to using magnetic samples with masses of 20 mg or less. For

the non-magnetic compounds, samples with masses up to 100 mg were used to optimize the

acquired signal in such low magnetization materials. For magnetic compounds, the use of

the largest possible sample masses within the limitations of the measuring instrument also

offered the advantage of smaller relative weighing errors; in turn, this minimized the errors of

the absolute magnetization values which were often crucial in the interpretation of our data.
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Occasionally, residual flux was removed from the surface of the crystals, either mechanically

by scraping with a metal scalpel (which was often enough for the RAgGe compounds), or

chemically, by etching in acid solution (as was necessary for some RPtIn crystals).

Given the rod-like geometry of both the RAgGe and RPtIn crystals, for H ‖ [0 0 1]

measurements, the samples were mounted between two straws, with the rod axis parallel to

the straw axis. For measurements with the field parallel to the hexagonal plane, one facet of

the rod was typically glued to a plastic disk; subsequently, the disc was inserted horizontally

into the straw, in which case the measurements would be performed for field perpendicular to

the as-grown facet. In addition, the sample mount allowed us to measure anisotropic in-plane

magnetization, by rotating the disk 900 inside the straw, with respect to the (horizontal) axis of

the rod. Because of the hexagonal symmetry, this effectively rotated the crystal by 300 ( = 900

- 600) with respect to the direction of the field. The plastic disks were measured separately,

and their (small) contribution was subtracted from the overall signal whenever a disk was

used for sample measurements. Typically we refrained from using disks for measurements

on non-magnetic samples, in order to avoid additional errors introduced by subtracting their

corresponding two small signals.

Additional measurements of the high field DC magnetization of TbAgGe were carried out

with a vibrating sample magnetometer in a 180 kG superconducting magnet (National High

Magnetic Field Laboratory - Los Alamos Facility), whereas for measurements up to 140 kG

performed on a number of samples we used the extraction magnetometer in a Quantum Design

Physical Properties Measurement System (PPMS). For the former experiments the samples

were glued to a thin quartz rod, similar to the previously described disk and straw mount which

was used to align the samples in the latter case; occasionally, a longitudinal hole was drilled

through the disk, which allowed us to mount the rods inside, for H ‖ c measurements. This

was particularly useful in cases where, in this field orientation, the samples were susceptible

to large torques at the highest fields.

Angular dependent magnetization measurements have been performed on the TmAgGe,

TbPtIn and HoxY1−xPtIn (x ' 0.04) compounds. For these measurements, the angular
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position of the samples was controlled by a specially modified MPMS sample holder which

allowed for the rotation of the sample so that either the [001], [100] or [120]-axis stayed per-

pendicular to the applied magnetic field. In order to avoid torque on the rotator due to the

extreme anisotropy of the samples , small mass samples (i.e. m = [0.40 ± 0.05] mg in

the case of TbPtIn, m = [0.54 ± 0.05] mg for TmAgGe, and m = [2.40 ± 0.05] mg for

HoxY1−xPtIn) were used for the angular dependent measurements. To correct for the larger

relative weighing errors that result from such small masses, we used a 13.55 mg TbPtIn sample,

a 2.40 mg TmAgGe sample, and a 35.0 mg HoxY1−xPtIn sample respectively, to measure M(H)

curves for field along the primary crystallographic directions; the small-mass rotator data was

normalized to the larger-mass data sets for the key directions. Whereas some errors are still in-

troduced by this normalization due to the manual orientation of the large samples, the angular

accuracy with which we are able to orient them is probably within 100. The various M(H, θ)

measurements on the smaller samples were than calibrated using the data for the larger mass

pieces; this is believed to be very accurate given that the angular uncertainty in the rotator is

less than 10. There is additional uncertainty introduced by possible misalignment of the small

piece with the c-axis exactly perpendicular or perpendicular to the applied field (due to the

construction of the sample holder, this misalignment shouldn’t be more than 100).

4.2.2 Resistivity measurements

The electrical resistance in zero and applied field was measured using a standard AC four-

probe technique. These measurements were performed either in the QD PPMS-9 or 14 instru-

ment using the ACT option, or using a Linear Research LR-700 AC resistance bridge (f = 16

Hz, I = 0.3 - 3 mA) in the magnetic field -temperature environment of the QD MPMS system.

The He-3 option of the QD PPMS-14 allowed us, when necessary, to extend our transport

measurements down to T = 0.4 K, whereas the minimum temperatures reached in all other

instruments was close to 2 K, and the maximum used temperature was 300 K. Platinum wires

were attached to the samples with Epotek H20E silver epoxy, and cured at 1200 C for ∼ 30

minutes. Typical contact resistances were between 1 and 2 Ω. Since most samples were thin
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hexagonal rods, the current was always flowing parallel to the c-axis; we therefore measured

transverse (H ⊥ i) magnetoresistance when the field was applied within the basal plane, or

longitudinal (H ‖ i) for field along the c-axis.

Hall resistivity measurements were performed on single crystals of YbAgGe, TmAgGe, Lu-

AgGe and YbPtIn. The samples were polished down to a plate-like shape, and four Platinum

leads were attached with silver epoxy. Except for the case of YbAgGe, the sample geometry

also restricted the Hall resistivity measurements only to the field applied within the hexagonal

crystallographic plane (H ‖ ab). The Hall resistivity ρH(H,T) was measured for field perpen-

dicular to both the current and the Hall voltage directions. In order to minimize the inherent

(small) misalignment of the voltage contacts, these measurements were taken for two opposite

directions of the applied field, H and -H, and the odd component, (ρH(H) - ρH(-H))/2 was

taken as the Hall resistivity.

4.2.3 Specific heat measurements

Specific heat measurements were made using the heat capacity option of the Quantum

Design PPMS-9 or 14; as for the transport measurements, specific heat data was often collected

for temperatures down to 2 K, but in some cases we used the He-3 option of the QD PPMS-14

system to reach temperatures down to 0.4 K. A relaxation technique was used for the specific

heat measurements, in which the sample is briefly heated and then allowed to cool. The

thermal response of the sample is then fit over the entire temperature response using a model

that accounts for the thermal relaxation of both the sample and the sample platform. The

samples were attached to the heat capacity platform with Apiezon N grease. The thermal

response of the platform and grease was measured separately for the appropriate field and

temperature ranges, to allow for the subtraction of this component from the final measurement.

To achieve maximum accuracy within reasonable time constraints, the system was typically

allowed to cool for two time constants. Thermal contact with the environment was minimized

by evacuating the sample chamber to approximately 0.01 mTorr.
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4.2.4 X-ray diffraction measurements

4.2.4.1 Room-temperature powder X-ray diffraction measurements

X-ray diffraction patterns were taken at room temperature on pulverized single crystals to

verify whether any impurity phases were present in the samples and to determine/confirm the

unit cell dimensions. A conventional tube source was used to obtain the patterns in flat plate

geometry using CuKα (1.5406 Å) radiation. Typical measurements consisted of scans with 2

θ between 200 and 900, data being recorded every 0.020. The collected data was subsequently

analyzed using the Rietica Rietveld refinement program.

4.2.4.2 Single Crystal X-ray Diffraction

Single crystal X-ray diffraction measurements were performed on flux grown samples of

RPtIn, R = Tb, Tm and Yb, and an on-line grown YbPtIn single crystal. Small single crystals

(with typical sizes around 2 × 5 × 10 µm3) were extracted from the flux and on-line grown

samples. Room-temperature X-ray diffraction data were collected on a STOE IPDSII image

plate diffractometer with MoKα radiation, and were recorded by taking 10 scans in θ in the full

reciprocal sphere. The range of 2 θ extended from 60 to 630. Numerical absorption corrections

for both crystals were based on crystal face indexing, followed by a crystal shape optimization.

Structure solution and refinement were done using the SHELXTL program.
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CHAPTER 5. Thermodynamic and transport properties of the RAgGe

(R = Tb - Lu) single crystals∗

5.1 Introduction

Ternary intermetallic compounds R-T-M, with R = rare earth metals, T = transition

metals, M = metals of the p block, have raised a lot of interest in the past years, given their

structural complexity and their greatly varying physical properties. Studies of the anisotropic

properties of such materials, with the R in tetragonal point symmetry, revealed anisotropy (in

some cases extreme) in members of the RAgSb2 (Myers, 1999b) and RNi2Ge2 (Bud’ko, 1999)

series, as well as in the well known quaternary RNi2B2C compounds, for R=Tb-Er (Canfield,

1997b; Cho, 1995; Cho, 1996a,b; Canfield, 1998). The strong crystalline electric field (CEF)

anisotropy confines the moments either along the c-axis of the tetragonal unit cell (i.e., in

TbNi2Ge2, ErAgSb2, TmAgSb2), or to the basal plane ab (in ErNi2Ge2, DyAgSb2 and the

aforementioned RNi2B2C compounds), and metamagnetic transitions occur in the majority of

these materials..

In addition to metamagnetism, hybridization of the 4f moments occurs in some compounds,

making these tetragonal series even more interesting: YbNi2B2C (Yatskar, 1996), CeNi2Ge2

(Bud’ko, 1999; Knopp, 1988), YbNi2Ge2 (Bud’ko, 1999) are reported to have significant hy-

bridization between the 4f and the conduction electrons.

Having achieved a basic understanding of the physical properties of these tetragonal com-

pounds, in which the R3+ ions are positioned in crystallographically unique tetragonal point

symmetry sites, we anticipate that materials with different crystal structure would be of further
∗after ”Thermodynamic and transport properties of RAgGe (R = Tb - Lu) single crystals”, E. Morosan, S.

L. Bud’ko, P. C. Canfield, M. S. Torikachvili and A. H. Lacerda, J. Magn. Magn. Mater. 277 298 (2004).
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interest. Crystals with hexagonal unit cells preserve the axial versus basal plane anisotropy

while allowing for three R point symmetries: orthorhombic, trigonal or hexagonal. A represen-

tative of the first class of materials (i.e., orthorhombic point symmetry) is the RAgGe series,

that crystallizes in the ZrNiAl structure, an ordered variant of the Fe2P structure.

In this chapter we will present detailed experimental results of magnetization, magneto-

transport and specific heat measurements for each compound. We will start with LuAgGe as

the non-magnetic member of the series, and then progress from R = Tb through Yb. The

experimental section is followed by a brief discussion, where we will emphasize the observed

trends in the magnetic properties within the series, as well as a few outstanding questions we

are presently trying to address.

5.2 Results and analysis

5.2.1 LuAgGe

LuAgGe has electronic and magnetic properties consistent with a weakly diamagnetic in-

termetallic compound with no magnetic order.
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Figure 5.1 (a) Anisotropic temperature-dependent susceptibility and (b)
anisotropic magnetization isotherms at T=2K of LuAgGe.
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The magnetization as a function of temperature (Fig. 5.1a) is almost constant, with a

very small, average, high temperature values around -2.3× 10−5 emu/mol (H ‖ ab), and

-5× 10−5 emu/mol (H ‖ c) respectively. At low temperatures, an upturn in the susceptibility

data occurs, which could be a consequence of some magnetic impurities being present in the

original materials (e.g., the tail indicates a magnetic impurity contamination equivalent to

0.2% Gd). Field dependent magnetization curves for the two orientations of the field are

shown in Fig. 5.1b; as expected for a non-magnetic compound with some magnetic impurities,

the magnetization is a superposition of Brillouin saturation of the impurities with applied field,

and a weak diamagnetic signal.
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Figure 5.2 Zero-field resistivity and transverse magnetoresistance (lower
right inset) of LuAgGe.

The temperature dependent resistivity of LuAgGe (Fig. 5.2) demonstrates the metallic

character of this compound. Below ∼50K, the impurity scattering becomes dominant, with

a relatively large residual resistivity ρ(1.8K) ≈ 45 µΩ cm, resulting in a relatively poor
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RRR of about 2, far smaller than the RRR values found in the rest of the series. The upper

inset to Fig. 5.2 shows that there is no clear resistance minimum found in LuAgGe at low

temperature. This is important to note given that for the R = Tb - Tm members of the RAgGe

series do manifest a minimum in the temperature dependent resistivity for temperatures well

above their respective Néel temperatures. The lower inset to Fig. 5.2 presents the transverse

magnetoresistance, which varies approximately as H2, as expected for normal metals.
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Figure 5.3 (a) Heat capacity of LuAgGe; (b) Cp/T versus T 2 for LuAgGe;
insert: low temperature part, line in the inset is a linear fit at
low temperatures.

Finally, we have measured the specific heat CP as a function of temperature (Fig. 5.3a).

These data will be used as an estimate of the non-magnetic contribution to the specific heat

in all RAgGe, R = Tb - Yb. As calculated from the linear fitting of the low-temperature

CP / T (T 2) data (Fig. 5.3b), the electronic specific heat coefficient for the non-magnetic

LuAgGe compound is: γ = (1.37 ± 0.02) mJ / mol*K2 whereas ΘD ≈ 300 K.
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5.2.2 TbAgGe

The anisotropic, inverse susceptibility as a function of temperature for TbAgGe is shown

in Fig. 5.4, together with the calculated polycrystalline average. The inset presents the low

temperature region of the susceptibility for the applied field H = 1 kG parallel and perpen-

dicular to the c-axis. The inverse susceptibility above ∼ 50 K is consistent with Curie-Weiss

behavior of the magnetization: χ(T ) = C / (T + ΘW ), where ΘW is the paramagnetic

Weiss temperature. The values of ΘW for the two orientations of the field, as well as for the

polycrystalline average, are listed in Table 5.1 in the discussion section. A linear fitting of the

average inverse susceptibility in the paramagnetic state gives a value of the effective moment

µeff = 9.7 µB, which is close to the theoretical value for Tb3+ of 9.72 µB.
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Figure 5.4 Anisotropic inverse susceptibilities of TbAgGe and calculated
average (line); inset: low-temperature anisotropic susceptibili-
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The low temperature susceptibility for H = 1 kG (shown as an inset in Fig. 5.4) indicates



64

0 5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(c)

 

 

d
 / 

dT
 (1

0-5
 *

*c
m

 / 
T)

T(K)

0

10

20

30

(b)

 

 

TbAgGe

d(
M

/H
*T

)/d
T

(e
m

u/
m

ol
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a)

 

 
C

P(
J/

m
ol

*K
)

0 10 20 30 40
0

2

4

6

8

10

12

R ln3

 S
m
 (J

/m
ol

*K
2 )

 

 

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

 

 

Figure 5.5 (a)Low-temperature d(χT )/dT for TbAgGe (inset: enlarged
to show lower peaks’ position in d(χT )/dT ); (b) specific
heat CP (T ) with the magnetic entropy Sm in the inset; (c)
low-temperature dρ/dT ; dotted lines mark the peak positions
as determined from (a).
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antiferromagnetic ordering below the Néel temperature TN = 28.4 K. This transition temper-

ature, as well as two others are seen more clearly for H ‖ c and can also be identified in

d(χ T ) / dT (around 28.5 K, 24.7 K and 19.8 K respectively) and dρ / dT (at 28.4 K, 24.6 K

and 19.8 K) (Fig. 5.5a and c); in CP (T ) (Fig. 5.5b) only the higher two transitions are visible,

around 28.3 K and 24.7 K respectively. Another possible change in slope in M(T ) / H occurs

around 18 K, but it is obscured in all other measurements, and is therefore unclear if it can be

associated with another magnetic transition. However, in the Hc(T ) phase diagram for H ‖ c

(shown below), we can follow a phase boundary indicative of such a transition.

Specific heat data was also used to estimate the magnetic entropy Sm(T ), shown in Fig.5.5b,

inset. From these data it can be inferred that the ordered state in TbAgGe is emerging out

of triplet ground state, or there are at least a combination of a singlet and a doublet, or three

singlet states closely spaced.
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Figure 5.6 Zero-filed resistivity of TbAgGe (inset: enlarged
low-temperature part).
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At high temperatures, the resistivity measurements (Fig. 5.6) indicate the metallic charac-

ter of TbAgGe as ρ monotonically decreases with decreasing T . The residual resistivity ratio

RRR, calculated as ρ(300K) / ρ(2K) and equal to 6.5, indicates fair crystal quality. The low

temperature region of the resistivity measurements features slope changes associated with the

magnetic transitions discussed above. On the other hand, there is a clear minimum of the ρ(T )

curve around T ≈ 50 K. This minimum in resistivity occurs far above the Néel temperature

(around 2*TN ), which rules out the possibility of a superzone gap causing this feature, and,

as will be seen below, occurs for all other local moment-bearing members of the series. This

feature could be explained by magnetic fluctuations or some other, as of yet to be identified,

mechanism.

Based on all the measurements performed on single crystals of TbAgGe, we can identify at

least three transitions, at T = (28.4 ± 0.1) K, (24.65 ± 0.05) K and (19.8 ± 0.1) K; the lowest

two temperatures are very close to those reported in Baran (Baran, 1998) for the polycrystalline

samples (from magnetization and neutron diffraction measurements) as the only transitions.

We are thus led to believe that the highest (antiferromagnetic) transition temperature, as well

as any other possible ordering temperatures, was not detected by the measurements made on

polycrystalline samples.

Both resistivity (Fig. 5.7a) and magnetization measurements (Fig.5.7b) as function of

applied field provide evidence for a series of metamagnetic transitions in TbAgGe. Initial

field dependent magnetization and resistivity measurements up to H = 70 kG reveal at least

two metamagnetic transitions for critical fields Hc ≈ 20 kG, and 48 kG respectively, when

field is applied along the c-axis. Given that the system seemed to be far below saturation

(M(70kG) = 2.77 µB/Tb ¿ 9µB/Tb), further magnetization measurements were performed

for fields up to 180 kG and several other metamagnetic transitions were observed. (It should

be noted that there is clear indication of hysteresis as manifested by the difference in M(H) for

increasing and decreasing field measurements [inset, Fig. 5.7b]). The value of the magnetiza-

tion at 180 kG is M = 7.78 µB/Tb, still below the calculated value for µsat(Tb3+) = 9.0 µB.

This somewhat suppressed value of M could be consistent with more metamagnetic states
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Figure 5.7 (a) Transverse magnetoresistance for TbAgGe; (b) Anisotropic
M(H) curves for fields up to 70 kG (inset: axial magnetization
up to 180 kG).

beyond 180 kG, or with moments alignment at some angle φ 6= 0 with respect to the c-axis,

or may simply be a caliper of the uncertainty in the absolute value of M in this high field

measurement.

In order to better determine the number and extent of metamagnetic phases that exist for

TbAgGe when H ‖ c, more measurements were done (Fig. 5.8a,b), which allowed us to plot a

tentative Hc(T ) phase diagram shown in Fig. 5.9. Local maxima of d(χ T ) / dT or dM / dH
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were used to estimate the Hc and Tc values, as illustrated in Fig. 5.8c. Numerous phases

can be observed. Whereas Fig. 5.9 clearly shows the three, H = 0, transition temperatures

discussed above, it also shows a lower field and temperature phase line existing for finite applied

fields. Figure 5.8c illustrates that this lowest phase line is clearly detected in our M(T,H)

data. A remaining question associated with this phase diagram is whether this lowest phase
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line intersects the H = 0 axis at any finite temperature or flattens out at very low fields such

that it intersects H = 0 at T ≈ 20 K, where another transition already exists.

5.2.3 DyAgGe

Although DyAgGe in the paramagnetic state is more isotropic than TbAgGe, with slightly

larger susceptibility for H ‖ c than for H ‖ ab (Fig. 5.10), it has an extremely anisotropic

ordered state (as seen in Fig. 5.10a inset, for H = 1 kG); this low temperature anisotropy is

further enhanced for lower (0.1 kG) applied fields (Fig. 5.10b). Two transition temperatures

are detected by d(χ T ) / dT (at 14.4 and 12.0 K), dρ / dT (at 14.4 K, and 12.0 K) and CP (T )

(at 14.6 K and 12.1 K) (Fig. 5.11). These are in agreement with the temperatures determined

by earlier measurements on polycrystalline samples (Gibson, 1996; Baran, 1998). There is one

more, broader, lower temperature peak in Fig. 5.11a, not visible in any other measurement.
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But comparison of d(χ T ) / dT plots for two different applied fields (Fig. 5.11a, H = 0.1 kG

and H = 1 kG) seems to indicate that the low temperature peak is moving down in T rapidly

as the applied field increases, whereas the other two are unaffected by the change in H.
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Figure 5.10 (a) Anisotropic inverse susceptibilities of DyAgGe and cal-
culated average (line) at H=1kG; inset: low-temperature
anisotropic susceptibilities; (b) low-temperature anisotropic
susceptibilities for H=0.1kG.

In order to examine the low temperature state of DyAgGe more carefully 0.1 kG zero-field-

cooled-warming (ZFC) and field-cooled warming (FC) data sets were taken and are plotted

in Fig. 5.12. These data are consistent with an ordered state below 12.0 K that has a net



71

0 10 20 30 40
0
2
4
6
8

10
12
14
16

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 

C
p (

J/
m

ol
*K

)

T(K)

0

2

4

6

8

10

d
 / 

dT
 (1

0-6
*c

m
 /T

)

 

 
-15

-10

-5

0

5

 H=0.1kG
 H=1kG  

 

DyAgGe
d(

M
/H

*T
)/d

T

R ln3

 
 

S m
(J

/m
ol

e*
K2 )

T(K)

Figure 5.11 (a) Low-temperature d(χT )/dT for DyAgGe for H=0.1kG and
1kG; (b) low-temperature dρ/dT ; (b) specific heat Cp(T ) with
the magnetic entropy Sm in the inset; dotted lines mark the
peak positions as determined from lowest field data in (a).



72

ferromagnetic component along the c-axis. The broadness and the field sensitivity of the lowest

temperature peak in Fig. 5.11a, as well as the difference between the ZFC and FC data sets

shown in Fig. 5.12 are consistent with the rotation of domains in small applied fields. It should

also be noted that the magnetization associated with the lowest temperature point of the FC

curve shown in Fig. 5.12 corresponds to M ∼ 0.66 µB/Dy, the value associated with the low

field plateau of the M(H) plot shown in Fig. 5.13. This further supports the idea that below

T ∼ 12 K the magnetically ordered state of DyAgGe has a net ferromagnetic component along

the c-axis.
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Figure 5.12 ZFC-FC magnetization of DyAgGe, H=0.1kG (H‖c).

The linear behavior of the inverse susceptibility above ∼ 50 K (Fig. 5.10a) is indicative

of Curie-Weiss like susceptibility, the effective magnetic moment determined from the linear

region being µeff = 10.3 µB (in good agreement with the theoretical value for Dy3+, which

is 10.6 µB). Paramagnetic Weiss temperatures ΘW are listed in Table 5.1.
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Figure 5.13 Anisotropic magnetization curves shown for three orientations
of the applied field.

The resistance of DyAgGe increases linearly with temperature above 50 K (Fig. 5.14a). At

low temperatures, the resistivity has a local minimum around 30 K, followed by a sharp drop

around the transition temperature; this indicates loss of spin disorder scattering as the system

enters the ordered state. The residual resistivity ratio RRR is approximately 5.2.

Field dependent magnetization measurements indicate a complex metamagnetism in DyAgGe,

as shown in Fig. 5.13: transitions can be seen in all three orientations of the applied field

(H ‖ [001], H ‖ [120] and H ‖ [010]), which probably means that, in the saturated

state, the magnetic moments are inclined at some angle 00 < ϕ < 900 with respect

to the c-axis. This could justify the low magnetization values (below the theoretical value

µsat(Dy3+) = 10 µB) in all three directions even at the highest applied field, as we explain

in more detail in the discussion section.

The critical fields for the metamagnetic transitions are Hc ≈ 14 kG, 31 kG, 45 kG for
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Figure 5.14 (a) Zero-filed resistivity of DyAgGe (inset: enlarged
low-temperature part); (b) Anisotropic magnetoresistance at
T = 2 K.

H ‖ [120], 13 kG, 31 kG, 60 kG for H ‖ [010], and 3 kG, 12 kG, 46 kG, 50 kG, 71 kG for

H ‖ c respectively where it should be noted that for H ‖ c ∼ 3 kG the transition is thought

to be associated with domain rotation (as discussed above). These values can also be seen in

the R(H) curves, shown in Fig. 5.14b for H ‖ c and H ⊥ c, except for the ones beyond 55 kG,

which was the upper field limit for this magnetoresistance measurement. Once metamagnetism

of planar moments is better understood (see discussion section on metamagnetism in TmAgGe

below) the study of the angular dependence of metamagnetism in DyAgGe, a system with

highly anisotropic but non-planar, non-axial moments, should be interesting and hopefully

tractable.

5.2.4 HoAgGe

The susceptibility of HoAgGe in the paramagnetic state is almost isotropic, as can be seen

in Fig. 5.15. For temperatures higher than 50 K the susceptibility follows the Curie-Weiss

law χ(T ) = C / (T + ΘW ); the corresponding paramagnetic temperatures ΘW are given in

Table 5.1. From the linear fit of the inverse susceptibility (for the polycrystalline average) we
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get an effective moment µeff = 10.0µB, close to the theoretical value µeff (Ho3+) = 10.6µB.

The compound orders antiferromagnetically below Néel temperature TN=11.0K, whereas a

spin reorientation transition occurs around T=7.4K. Although TN shows up as a sharp, well-

defined peak in all three plots in Fig. 5.16, the lower transition temperature is indicated by

broader peaks in d(χ T ) / dT around 7.4K (Fig. 5.16a), and in dρ/dT around 8.0K (Fig.

5.16c); specific heat plot shown in Fig. 5.16b seems to have an even broader feature close to

these temperatures. It should be noted that, as in the case of TbAgGe, the measurements on

polycrystalline samples (Baran, 1998) missed a transition (e.g., the lower one for HoAgGe),

whereas the reported temperature of the upper transition falls close to our measured value.
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Figure 5.15 Anisotropic inverse susceptibilities of HoAgGe and calculated
average (line); inset: low-temperature anisotropic susceptibil-
ities.

The temperature dependent resistivity measurement (Fig. 5.17) demonstrates the metallic

character of this compound and the residual resistivity ratio for HoAgGe is RRR=4.0. At a
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Figure 5.16 (a) Low-temperature d(χT )/dT of HoAgGe; (b) Specific
heat Cp(T ) with the magnetic entropy Sm in the inset; (c)
low-temperature dρ/dT ; dotted lines mark the peak positions
as determined from (a).

temperature of about 19K a broad minimum in ρ(T ) is observed, and a drop in resistivity due

to the loss of spin disorder scattering in the magnetically ordered phase.

From the specific heat measurements shown in Fig. 5.16b we calculated the magnetic

entropy Sm of this compound (shown in the inset); the value of the entropy, Sm ≈ R ln 4, at

the change in slope that occurs around the ordering temperature suggests that the magnetic
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Figure 5.17 Zero-field resistivity of HoAgGe (inset: enlarged
low-temperature part).

order in HoAgGe emerges out of state with a degeneracy of 4.

The magnetization curves as a function of applied field (Fig. 5.18a) reveal a series of

metamagnetic transitions for H applied in the ab-plane, with critical field values of around

11.0kG, 22.0kG and 35.0kG for H ‖ [010], and 12.0kG, 23.0kG and 28.0kG respectively for

H ‖ [120], whereas when H is applied along the c-axis the magnetization curve can either be

a broad metamagnetic transition or a continuous spin-flop transition. The theoretical value of

the saturated magnetization expected for Ho3+ (µsat = 10µB) is not reached by fields up to

140kG in any of the three orientations; as mentioned before, this can be due to the moments

being along an inclined axis with respect to the c-axis of the crystals, or further support the

idea of the spin-flop transition, especially given the continuous increase in magnetization as H

is being increased. Another possible explanation, which we detail for TmAgGe, is related to
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Figure 5.18 (a) Anisotropic magnetization curves in HoAgGe, shown for
three orientations of the applied field at T=2K; (b) Transverse
magnetoresistance and M(H) for H‖[120] at T=2K.

the crystal structure of these compounds and will be discussed below.

We have also measured magnetoresistance for H ‖ ab (Fig. 5.18b), and it is consistent

with the various metamagnetic states seen in M(H). Given the geometry of the crystals,

there was more uncertainty in orienting the resistance pieces than the ones for magnetization

measurements; consequently, we can infer the approximate orientation of the field in the mag-

netoresistance measurement by comparison of these data with the M(H) curves for H ‖ ab:
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since various features in ∆ρ(H)/ρ(0) occur close to the critical fields in M([120]) (Fig. 5.18b),

it seems that H was almost parallel to the [120] direction.

5.2.5 ErAgGe

So far in the RAgGe series, we have seen a progression from axial anisotropy in TbAgGe

toward Mab ∼ Mc for HoAgGe. ErAgGe continues this trend with the local Er moments

becoming far more planar in nature (Fig. 5.19). This is analogous to the trend seen in many

tetragonal systems (Myers, 1999b; Bud’ko, 1999), in which the change in sign of the B20 CEF

parameter causes a switch from planar to axial moments between Ho and Er (Wang 1971;

Boutron 1973).
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Figure 5.19 Anisotropic inverse susceptibilities of ErAgGe and calculated
average (line); inset: low-temperature anisotropic susceptibil-
ities.

The inverse susceptibility of ErAgGe is linear above 75K, with µeff = 9.3µB, fairly close
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to the theoretical value of 9.6µB for Er3+. The anisotropic Weiss temperatures ΘW are given

in Table 5.1. For a 1 kG field applied parallel to the ab-plane, magnetic ordering is observed

below 3 K (inset, Fig. 5.19); a smaller feature seems to indicate the same ordering temperature

for field applied parallel to the c-axis.
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Figure 5.20 (a) Specific heat Cp(T ) with the magnetic entropy Sm in
the inset; (b) low-temperature d(χT )/dT of ErAgGe; (c)
low-temperature dρ/dT ; dotted line mark the peak position
as determined from (b).

The temperature dependent resistivity is consistent with local moment ordering and man-
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ifests a local maximum in dρ / dT at 3 K (Fig. 5.20c). Below the ordering temperature a

decrease in resistivity (Fig. 5.21) corresponds to the loss of spin-disorder scattering, as the

magnetic moments become antiferromagnetically ordered. The high temperature resistivity is

typical of intermetallic compounds, increasing up to ∼ 100 µΩ cm at T = 300 K, and leading

to a RRR value of ∼ 3.0. The increasingly ubiquitous local minimum in the resistivity can

still be observed above TN , centered near T ∼ 6 K. In Fig. 5.20a the specific heat shows a

well-defined peak at T ≈ 3.2 K, very close to the temperature of the maximum in d(χ T ) / dT

(Fig. 5.20b). The inset is a plot of the magnetic entropy of ErAgGe, where the break in slope

around Sm ≈ R ln 2 indicates that the ground state of this compound is a Kramers doublet.
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Figure 5.21 Zero-field resistivity of ErAgGe (inset: enlarged
low-temperature part).

In the M(H) plots (Fig. 5.22a) we again see clear anisotropy, with the moments somewhat

constrained to the basal plane. For field applied along the c direction, magnetization linearly

increases with field, up to H ≈ 50 kG; right before the maximum applied field H = 55 kG,

an upturn in the M(H) curve is apparent, possibly indicating a subsequent metamagnetic
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transition. When field is applied parallel to the ab-plane, we see a broad, poorly defined

metamagnetic transition, as our measurements are being taken at T = 2 K, close to TN of this

compound. The magnetoresistance for H ‖ ab (Fig. 5.22b) shows a local maximum around

H = 11 kG, which further indicates the presence of a metamagnetic transition for this critical

field.
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Figure 5.22 (a) Anisotropic field-dependent magnetization for ErAgGe at
T = 2 K; (b) transverse magnetoresistance at T = 2 K.



83

5.2.6 TmAgGe

Magnetization measurements with field applied perpendicular and parallel to the c-axis

(Fig. 5.23) indicate extreme anisotropy in TmAgGe: χab / χc ≈ 30 at T = 5.0 K. This

temperature was chosen just above the antiferromagnetic ordering temperature TN ≈ 4.2 K.

Above ∼ 100 K, inverse susceptibilities are linear with µeff = 7.9 µB, close to the theoretical

value of µeff (Tm3+) = 7.6 µB.
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Figure 5.23 Anisotropic inverse susceptibilities of TmAgGe and calculated
average (line); inset: low-temperature anisotropic susceptibil-
ities.

Figure 5.24 shows a sharp peak in CP (T ) as well as d(χ T ) / dT for 4.2 ± 0.1 K. The

zero-field resistivity data shown in Fig. 5.25, supports the ordering temperature inferred from

the thermodynamic data. The plot of dρ / dT (Fig. 5.24c) has a clear peak between 4.0

and 4.6 K. In the inset of Fig. 5.24a, the calculated magnetic entropy Sm(T ) has a break in

slope close the transition temperature TN , for an entropy value of ∼ R ln 2, indicative of a
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Figure 5.24 (a) Specific heat Cp(T ) with the magnetic entropy Sm in the
inset; (b) Low-temperature d(M/H ∗ T )/dT for TmAgGe; (c)
low-temperature dρ/dT ; dotted line marks the peak position
as determined from (a).

doublet ground state or two closely spaced singlets. Below TN , loss of spin disorder scattering

is apparent from the sudden drop in resistivity, due to the antiferromagnetic ordering of the

Tm3+ moments. Above the ordered state, the resistance goes through a broad local minimum

around 15 K (far higher than TN ), after which it starts increasing; for temperatures higher than

∼ 100 K it becomes approximately linear. The residual resistivity ratio RRR ≈ 4.0 reflects



85

acceptable quality of these crystals.
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Figure 5.25 Zero-field resistivity of TmAgGe (inset: enlarged
low-temperature part).

Clear metamagnetism is seen in the M(H) plot in Fig. 5.26a for in-plane field orientation, as

well as in magnetoresistance measurements shown in Fig. 5.26b. Below H = 70 kG, the in-plane

magnetization curves in Fig. 5.26a show two metamagnetic transitions for H ‖ [120], with

critical field values Hc1 ≈ 4.25 kG and Hc2 ≈ 9.25 kG; for the other orientation, H ‖ [010],

they merge into a single transition with a critical field around Hc ≈ 6.0 kG. A very complex

angular dependence of the critical fields, as well as of the locally saturated magnetization

values, can thus be anticipated,and this will be presented in detail in Chapter 6.

Similar to the case of HoAgGe, we compare the position of any features revealed by the

magnetoresistance measurement in Fig. 5.26b to the critical field values that we get from

M(H ‖ ab) curves. Below 10 kG, there is one obvious peak, and another possible change of

slope in the plot in Fig. 5.26b; therefore we could probably assume that the field was close to
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the [120] direction, for which two metamagnetic transitions can be seen in M(H). However,

there is another broad peak in the magnetoresistance that can not be correlated with any

feature in magnetization, and which requires further investigation.
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Figure 5.26 (a) Anisotropic magnetization curves in TmAgGe, shown for
three orientations of the applied field; (b) Transverse magne-
toresistance and M(H) curves for H‖ab, at T=2K.

5.2.7 YbAgGe

YbAgGe is a compound with some distinctly different properties compared to all previous

members of the series. Fig. 5.27 shows the inverse anisotropic susceptibility in an applied field

H = 1 kG. It is linear above ∼ 20 K, indicating Curie-Weiss behavior at high temperatures with
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Figure 5.27 Anisotropic inverse susceptibilities of YbAgGe and calculated
average (line); inset: low-temperature anisotropic susceptibil-
ities.

an effective moment of ∼ 4.4 µB/Yb; however, below this temperature, as can be seen in the

inset from low temperature susceptibility, there is no sign of magnetic ordering down to 1.85 K.

Instead there is an apparent loss of local moment behavior, manifesting itself as a levelling off of

the susceptibility. Also, no distinct features appear in the M(H) or magnetoresistance data at

T = 2 K (Fig. 5.28a,b): for H ‖ c magnetization linearly increases with H up to H = 140kG,

whereas the in-plane data show that the compound is probably approaching saturation (the

fact that the high field magnetization is lower than calculated µsat(Yb3+) = 4.0 µB is possibly

a result of the crystal structure and CEF anisotropy of the RAgGe series, see the discussion

below); magnetoresistance at this temperature is consistent with what one would expect for

anisotropic, paramagnetic metal.

Katoh et al. (2004) have already reported the heavy fermion character of YbAgGe based
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Figure 5.28 (a) Anisotropic field-dependent magnetization and (b) magne-
toresistance for YbAgGe at T = 2 K.

on zero-field specific heat and resistivity measurements down to 2 K. Although these authors

did not go to low enough temperatures to detect the ordering below 1 K, their other data is

in good agreement with what we have presented here and elsewhere (Beyermann, 1998).

As can be seen in Fig. 5.29a, no significant change occurred after annealing (6000C for 1

week), and the RRR increase (from 2.8 up to 3.1) was slight. The annealing temperature was

limited by the possibility of melting the small amount of residual flux on the sample (note the

Ag-Ge eutectic at ∼ 6500C). The temperature dependencies of the resistivity, and the specific

heat (shown below) were almost identical before and after the heat treatment of the crystals.
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On the other hand the temperature dependent electrical resistivity can be changed signifi-

cantly by the application of magnetic field. When large field is applied (Fig. 5.29b), there is

an increase in the RRR value: for H ‖ ab, the RRR value increases dramatically to RRR ∼
10. This indicates that crystal purity is quite high and apparently the large residual resistivity
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ρ0 for H = 0 is due to sensitivity of hybridized Yb state to relatively minor disorder.
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Figure 5.30 Low temperature part of (a) resistivity; (b) specific heat (in-
set: CP (T ) on warming and cooling); (c) dρ/dT . Lines mark
magnetic transitions.

In order to characterize this compound at lower temperatures we have to rely on the

resistivity (Figs. 5.29 and 5.30) and specific heat (Figs. 5.30 and 5.31) measurements which

were taken down to 0.4 K. (Due to the limitations imposed by our measurement systems

magnetization data only go down to 1.85 K.) As the sample is cooled below 1.8 K there are
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two features visible in both the resistivity and specific heat. At 1.0 K there is a slight but clear

change in slope of the resistivity and there is a relatively broad maximum in the specific heat.

At 0.65 K there is an extremely sharp drop in resistivity and as well as a sharp peak in the

specific heat. Specific heat data were taken upon heating as well as cooling of the sample (Fig.

5.30b, inset) indicating that if there is any hysteresis associated with the 0.65 K transition it

is smaller than the peak width.
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Figure 5.31 Cp(T 2)/T for YbAgGe (open circles) with a high temperatures
linear fit (dotted line) giving γ value of∼ 150 mJ/mol K2; line:
CP (T 2)/T for non-magnetic LuAgGe. Inset: low temperature
part.

The calculated magnetic entropy Sm (Fig. 5.32) at T = 1.0 K is significantly less than

R ln 2. Based on this we can assume that the transition corresponds to small magnetic moment

ordering. This is in agreement with the enhanced electronic specific heat coefficient γ ≥ 154

mJ/mol K2 that we get from extrapolation of the high temperature part of the CP / T vs. T 2
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(Fig. 5.31) to T 2 = 0.
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Figure 5.32 Magnetic entropy for YbAgGe. Inset: low temperature part.

Low temperature small magnetic moment ordering is not the only feature indicating that

YbAgGe is probably a heavy fermion compound: deviations from the Curie-Weiss behavior in

χave (for which CEF effects are cancelled to the first order) below ∼ 20 K, and quite large Weiss

temperature (Θave ≈ − 30 K) suggest that Yb 4f levels may be significantly hybridized. If

this is true, an estimate of the Kondo temperature is given by Θ/10 ≤ TK ≤ Θ (Daybell,

1973), i.e., 3 K ≤ TK ≤ 30 K. Specific heat data plotted as CP / T vs. T 2 (Fig. 5.31) reveal

a distinct enhancement of the electronic specific heat coefficient (compared with the data for

LuAgGe on the same plot). This γ ∼ 150 mJ/mol K2 value, already being significantly

enhanced by itself, is apparently a lower limit of γ since a significant upturn in CP / T

vs. T 2 is observed below approximately 10 K, similar to that seen in many heavy fermion

compounds (Hewson, 1997), including for example YbNi2B2C (Yatskar, 1996) and YbRh2Si2
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(Trovarelli, 2000). Keeping in mind that YbAgGe has a low temperature magnetic ordering,

and that therefore an ambiguity in the evaluation of low temperature electronic specific heat

coefficient is present, Fig. 5.31 suggests that low temperature γ is within the range of ∼ 150

mJ/mol K2 to 1 J/mol K2. This crude estimate allows us to classify YbAgGe as a new Yb

heavy fermion compound, with low temperature reduced moment magnetic ordering, which

we already reported in (Beyermann, 1998). Using the single impurity relation (Hewson, 1997),

we can estimate the Kondo temperature as TK = wN π3R / 6 γ, where wN = 0.4107 is

the Wilson number and R is the gas constant. Using the aforementioned range of the value

of γ, the Kondo temperature can be evaluated as 15 K < TK < 120 K. Additionally, we

can estimate the Wilson ratio, R = 4 χ π2 k2
B / 3 γ µ2

eff (Hewson, 1997) for YbAgGe

using χ and γ determined at T = 1.8 K, and the high temperature effective moment µeff , as

R ≈ 1.8, which is close to R = 2 expected for heavy fermion compounds, and much higher

than R = 1, the Wilson ratio for non-interacting electrons (Hewson, 1997).

Having a Néel temperature, apparently associated with small moment ordering, so close

to T = 0 K makes YbAgGe an interesting system for the study of the competition between

magnetically ordered and correlated ground state. It is anticipated that pressure should be a

possible parameter for stabilizing the antiferromagnetic ground state.

5.3 Discussion

Among many properties that we see in the RAgGe series, anisotropy and metamagnetism

are particularly interesting, specifically in light of the crystal structure of these compounds: a

hexagonal unit cell with a single rare earth site of orthorhombic point symmetry. Across the

series, the magnetization is anisotropic, going from axial (in TbAgGe) to extreme planar (in

TmAgGe). The magnetic and transport properties throughout the RAgGe series proved to

be anisotropic, due primarily to the CEF splitting of the Hunds rule ground state multiplet.

In Table 5.1 the Weiss paramagnetic temperatures are given, for the two orientations of the

field, as well as for the polycrystalline average. Negative values for Θave for all R suggest

antiferromagnetic interactions between magnetic moments, although Dy may be an exception,
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Table 5.1 Magnetic ordering temperatures, Tm, effective magnetic mo-
ments and anisotropic paramagnetic Weiss temperatures ΘW .

Tb Dy Ho Er Tm Yb
28.4 ± 0.1, 14.5 ± 0.1, 11.0 ± 0.2, 0.95 ± 0.05,

Tm(K) 24.6 ± 0.1, 12.15 ± 0.1 7.7 ± 0.1 3.1 ± 0.1 4.15 ± 0.1 0.65 ± 0.05
19.8 ± 0.1

µeff (µB/R) 9.7 10.4 10.0 9.3 7.9 4.4
Θab(K) -53.8 -25.5 -10.1 -3.6 7.5 -15.1
Θc(K) 1.0 7.4 -1.9 -36.4 -76.3 -83.5

Θave(K) -28.3 -10.5 -7.1 -10.9 -14.4 -30.1

given the presence of the small ferromagnetic component of the magnetization. TbAgGe has

an easy axis parallel to c in the paramagnetic state. This is followed by a progression towards

a more isotropic case (R = Ho) while having Θab < Θc, whereas for R = Er - Yb the easy

axis lies in the ab-plane and Θab > Θc. The analysis of this anisotropy should allow for

the determination of the leading term in the crystal field Hamiltonian, similar to the case of

tetragonal systems. But a more complex calculation is needed for our hexagonal compounds,

where the R ions are located at sites with orthorhombic point symmetry, and this is beyond

the scope of this work.

The ordering temperatures in RAgGe (R = Tb - Tm) approximately scale with the de

Gennes factor dG = (gJ − 1)2J(J + 1) (Fig. 5.33), where gJ is the Landé g factor and J is

the total angular momentum of the R3+ ion Hunds rule ground state. This is consistent with

the coupling between the conduction electrons and the local magnetic moments giving rise to

the long range magnetic order via the RKKY interaction. However, significant deviations from

the linearity may be noticed, suggesting other factors may be involved (i.e. strong CEF effects

constraining the moments to either the ab plane or the c axis, as seen in the already mentioned

tetragonal compounds [Myers, 1999b; Bud’ko, 1999; Noakes, 1982]).

Because the strong CEF splitting confines the magnetic moments to the basal plane in

TmAgGe this compound is the simplest candidate in this series for a study of the metam-

agnetism. Tm3+ ions occupy 3g Wyckoff sites, with m 2 m (orthorhombic) point symmetry,

leading to a hexagonal structure with three R ions per unit cell (Fig. 3.1). Consequently,
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Figure 5.33 Changes of the magnetic ordering temperatures Tm for
R=Tb-Lu in the RAgGe series, with the de Gennes scaling
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referring to a single unit cell, we can assume that the magnetic moments of the three R ions

behave like Ising systems, rotated by 1200 with respect to each other in the basal plane. The

saturated state is reached when the three magnetic moment vectors add constructively (Fig.

5.34).

As will be presented in detail in Chapter 6, the complex metamagnetism observed in

TmAgGe is well described by the three co-planar Ising-like systems model (a model in which we

assume three Ising systems 1200 apart in the ab-plane of a hexagonal unit cell); furthermore,

the same model can be used to describe at least one more compound, isostructural to TmAgGe

(i.e., TbPtIn).

If we release the restriction that the three Ising systems be planar, while still imposing that

their in-plane projections be 1200 apart to agree with the symmetry of the crystals, we find this
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Figure 5.34 Hexagonal unit cell with the magnetic moments (short arrows)
in the saturated state of TmAgGe; long arrows indicate the
field along the two high-symmetry directions of the crystal.

modified model can describe the case of DyAgGe quite well. From the crystal structure of this

compound, and the orthorhombic symmetry of the rare earth sites, we can assume that the

three R magnetic moments of the unit cell align themselves along three non-planar equivalent

directions. We notice that for H=140kG (Fig. 5.13), the ratio of the magnetizations for the

two in-plane orientations (when H is parallel to the two independent high symmetry axes) is:

M(H‖[120])
M(H‖[010])

∣∣∣∣
exp

=
4.02
4.51

= 0.89

This is close to the previously calculated value of for the planar model assumed for TmAgGe.

In the case of DyAgGe, given that the three M(H) curves in Fig. 5.13 seem to indicate that the

moments are tilted outside the ab-plane, a model similar to that used for TmAgGe, enhanced

to 3 dimensions, may be appropriate. Let us assume that the three Dy3+ magnetic moments

lie on a cone around the c-axis, with the projections in the ab plane 120◦ apart from each other.

These in-plane projections will then behave similarly to the full moments in the case of Tm3+,
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and thus M(H‖[010]) represents 2
3 of the total ab magnetization Mab (if we assume saturation

at H=140kG): M(H‖[010]) = 2
3Mab. Then Mab = 3

2M(H‖[010]) = 3
2 ∗ 4.51µB = 6.77µB. To-

gether with the axial component Mc(≡ M(H‖[001])) = 6.85µB, we can now estimate the total

magnetization at H=140kG: M(140kG) =
√

(6.77µB)2 + (6.85µB)2 ≈ 9.63µB, close enough

to the calculated value µsat(Dy3+) = 10µB. We conclude that the model we assumed for the

magnetic moments is consistent with the experiment. Moreover, one can estimate the angle

ϕ of the saturated magnetization with respect to the c-axis: from the in-plane magnetization

being along the [010] direction, we can conclude that, in the saturated state, the total mag-

netization vector lies along a [0kl] axis. The angle ϕ with the c-axis can be calculated as:

tan ϕ = Mab
Mc

= 6.77
6.85 = 0.99 and thus ϕ ≈ 45◦.

The lattice parameters of the hexagonal unit cell in DyAgGe are given in Fig. 3.2 to be

a = 7.09Å and c = 4.20Å; in the orthogonal system of coordinates that we use in defining

the crystalline directions, these correspond to a′ = a = 7.09Å, b′ = a ∗
√

3
2 = 6.14Å and

c′ = c = 4.20Å. We can now write the direction given by the angle ϕ in terms of Miller indices

h, k and l, where h = 0, and k and l are such that

tanϕ = 0.99 =
kb′

lc′
= 1.46

k

l
⇒ k

l
= 0.68

The closest integer values for k and l are thus 2 and 3 respectively, which means that in

DyAgGe the saturated magnetization vector M is parallel to the [023] direction.

HoAgGe resembles DyAgGe in that both these compounds show metamagnetic transitions

for both high-symmetry directions in the ab-plane. However attempts to apply the Dy model

to Ho failed because the in-plane magnetization is almost isotropic in HoAgGe (Fig. 5.18a).

Another important observation is that in DyAgGe, the last seen metamagnetic transition

is followed by an almost constant magnetization (wide plateaus in all three orientations of the

field), supportive of the idea of a stable saturated state above ∼ 80 kG; in HoAgGe however,

magnetization keeps increasing with the applied filed, possibly indicating a continuous spin-

flop transition, as already mentioned. If this is true, than with fields around 100 kG this

compound is already in a regime of weak CEF, therefore any variant of the previous model is
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inappropriate. It is worth noting though that HoAgGe is rather curious given its anisotropy

(clear metamagnetism in the two in-plane directions and no clear transition for H ‖ c). At

some future date it would be interesting to study the angular dependence of metamagnetism in

DyAgGe and HoAgGe, to see how the phase diagrams vary as the anisotropy is being relaxed.

Insufficient data on ErAgGe (i.e., two in-plane orientations, higher fields) as well as the

low TN and the single, rather broad feature in M(H) prevent us from checking how the model

applies to this compound.

All RAgGe described here seem to be good metals, as shown by the monotonic increase of

the resistivity at high temperatures; the residual resistivity ratio RRR ranges from 2.0 to 6.5,

and it did not seem to improve considerably by annealing in the case of YbAgGe. However it

should be noted that YbAgGe has a RRR of about 10 in a 140 kG applied field, significantly

larger than that without field, indicating that a lot of the scattering in this compound is

magnetic in origin.

All of the magnetically ordered compounds in this study, except for YbAgGe, have a rather

unusual, pronounced minimum in the temperature dependent resistivity above the magnetic

transition. It is similar to the ρ(T ) behavior recently found in a different family, RCuAs2 (for

R = Sm, Gd, Tb, Dy) (Sampathkumaran, 2003). It has to be seen if this type of behavior

indeed requires, as suggested by Sampathkumaran (Sampathkumaran, 2003), novel ideas for

electrical transport phenomena in the paramagnetic state of relatively simple magnetic metals,

but the mere fact that similar, atypical, temperature dependence is observed in resistivity

of the members of two unrelated families, RCuAs2 and RAgGe, in the latter case in single

crystals, certainly asks for some theoretical input as well as search for other examples.

YbAgGe appears to be a very promising example of a Yb-based intermetallic compound

with clear hybridization. Whereas it does not order magnetically within our M(T ) measure-

ment range (above 1.85 K), it does have a clear small moment ordering below 1.0 K and also

has an enhanced electronic specific heat coefficient value (γ > 150 mJ/mol*K2). Based on

these data we can conclude that YbAgGe is a heavy fermion, with small moment ordering at

very low temperature. Consequently, there is a possibility of approaching a quantum critical
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point by experiments under applied magnetic field, variable pressure, or with changing lattice

parameters with doping, or with variable concentration of the magnetic moments (i.e. of the

Yb3+ ions). While in an isotropic case, application of pressure in Yb compounds close to

quantum critical point is expected to increase the ordering temperature (Thompson 1994),

crystallographically and electronically anisotropic materials like YbAgGe may have non-trivial

response to pressure. A detailed investigation of the nature of the ordering in YbAgGe is

presented in Chapter 8.
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CHAPTER 6. Angular dependent planar metamagnetism in the

hexagonal compounds TbPtIn and TmAgGe∗

6.1 Introduction

The effects of crystalline electric field (CEF) anisotropy on metamagnetism in intermetallic

compounds have been of interest for a long time (Gignoux, 1995; Gignoux, 1997), and numer-

ous studies of angular dependent local moment metamagnetism show that simple geometric

relationships exist between the critical fields of the metamagnetic phase transitions, and the

angle that the applied field makes with the corresponding easy axis. One simple case is that of

TbNi2Ge2 (Bud’ko, 1999), a tetragonal compound with Tb ions in tetragonal point symmetry,

where, at low temperatures, the crystalline electric field (CEF) anisotropy confines the local

moments along the c ([001]) crystallographic axis (Ising-like system). Consequently, several

metamagnetic transitions are observed, with the critical field values Hc having a 1/ cos θ de-

pendence on the angle between the applied field H and the c-axis. A more complex situation

is encountered when the magnetic moments are allowed more degrees of freedom , i.e., when

the CEF anisotropy constrains them to an easy plane. This is the case in the tetragonal

compounds RNi2B2C (Cho, 1996b; Canfield, 1997a,b), with R = Tb - Er, and RAgSb2 (My-

ers, 1999a,b) for R = Dy. The R ions are again in tetragonal point symmetry and the local

moments are confined to four equivalent [110] or [100] crystallographic directions; thus the

angular dependent magnetization measurements, when the field is applied in the basal plane,

reveal the four-fold anisotropy of the longitudinal magnetization that reflects the symmetry of

the unit cell. The angular dependencies of the locally saturated magnetizations Msat and the
∗after ”Angular dependent planar metamagnetism in the hexagonal compounds TbPtIn and TmAgGe”, E.

Morosan, S. L. Bud’ko and P. C. Canfield, Phys Rev B 71 014445 (2005).
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critical fields Hc could be treated by simple analysis, and plausible net distribution of moments

could be inferred for each metamagnetic phase (Canfield, 1997b; Myers, 1999a). Kalatsky and

Pokrovsky (Kalatsky, 1998) elaborated the four-position clock model, which agrees well with

the observed metamagnetism in HoNi2B2C and DyAgSb2.

Initially thought to be improbable, angular dependent metamagnetism in extremely planar

systems is now an accepted and understandable event in tetragonal compounds; but this has

not yet been well studied in hexagonal compounds, and this is the motivation for the present

analysis. Recently we reported the presence of metamagnetism in a hexagonal class of ma-

terials, i.e. the RAgGe compounds, for R = Tb - Tm (Chapter 5). They crystallize in the

ZrNiAl-type structure, an ordered variant of the hexagonal Fe2P family. In this structure,

there is a unique rare earth site in the unit cell, with the rare earth ions occupying equivalent

3g positions with orthorhombic point symmetry (Fig. 3.1). The anisotropic susceptibility was

found to be axial for TbAgGe and progressed towards extremely planar for TmAgGe. The

physical properties of the TmAgGe compound (antiferromagnetic ordering in the ground state,

extremely planar anisotropy, metamagnetism when the applied field was perpendicular to the

c-axis) are very similar to those of the isostructural TbPtIn system, previously only known

in polycrystalline form (Galadzhun, 2000; Watson, 1995), making both compounds good can-

didates for a study of the angular dependent metamagnetism in hexagonal systems. In both

TmAgGe and TbPtIn the R ions occupy the same site, whereas both ligands are different.

Having two such systems will allow us to show that the behavior we find is not specific to

one compound, but a more general result associated with this structure, or perhaps with the

orthorhombic point symmetry in a hexagonal unit cell. As we shall see, the Néel temperature

is much higher for TbPtIn (46.0 K) than for TmAgGe (4.2 K), with the former also showing a

possible spin reorientation transition at a fairly high temperature (Tm = 27.4 K). This latter

transition in TbPtIn was missed by the measurements on polycrystalline samples (Watson

1995), where even the nature of the magnetically ordered state below ∼ 50 K was not iden-

tified. Thus we can once again emphasize the advantage of analysis on single crystals rather

than on polycrystalline samples.
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This chapter is organized as follows: first we will present the M(T,H) data on TbPtIn, em-

phasizing the complexity of its ordered state, for field orientations along the two in-plane, high

symmetry directions; this will be followed by the M(H,θ) measurements at low temperature,

from which the values of the locally saturated magnetizations and critical fields as a function

of θ were extracted. Next, we will introduce a model for the net distribution of moments,

which we subsequently use to calculate the expected, locally saturated magnetizations Mj and

the critical fields (for the transition from state i to state j) Hci,j as functions of θ. This will

be followed by a comparison of how the calculated and experimental Mj and Hci,j values vary

with the angle between the applied field H and the easy axis for this compound.

Similar measurements performed on TmAgGe will then be shown, leading to the corre-

sponding experimental Mj(θ) and Hci,j(θ) phase diagrams, which we will again map onto the

appropriate model calculation.

We will also analyze similar M(H, θ) data of TbPtIn for T = 20 K, and use the same

model in order to characterize a magnetic phase present only at higher temperatures.

Finally, we will summarize our key results and also indicate how our model can be gener-

alized to a variety of possible point symmetries in tetragonal and hexagonal systems.

6.2 TbPtIn

Fig. 6.1 shows the inverse magnetic susceptibility for TbPtIn, as well as the low-temperature

magnetization in the inset. This compound appears to order antiferromagnetically below

TN = 46.0 K, with what is probably a spin-reorientation or a commensurate-to-incommensurate

transition around Tm = 27.4 K, as indicated by the peaks in the d(M ∗T/H)/dT plot (Fisher

1962) in Fig. 6.2a. In the determination of these temperature values, M/H represents the

polycrystalline average susceptibility χave, calculated as

χave = 1
3 χc + 2

3 χab

or, when measurements have been done along all three salient directions,

χave = 1
3 (χ[001] + χ[100] + χ[120]).

The above temperatures are further confirmed by the Cp(T ) and ρ(T ) (i||ab) data, also
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shown in Fig. 6.2b and c.
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Figure 6.1 Anisotropic inverse susceptibility of TbPtIn (symbols) and the
calculated average (line); inset: low-temperature anisotropic
susceptibilities.

In the ordered state, as well as in the paramagnetic state up to ∼ 100 K, the susceptibility is

extremely anisotropic, with the local Tb moments confined to the ab-plane at low temperatures.

To check the origin of the anisotropy in the paramagnetic state, single crystals of YPtIn

were grown, with a small number of non-magnetic Y3+ ions substituted with magnetic Tb3+

ions. The extremely anisotropic susceptibility and magnetization of the diluted compound

demonstrate that this is single-ion anisotropy associated with the CEF splitting of the Hund’s

rule ground state J multiplet. From the Curie-Weiss effective moment, as determined from

the average inverse susceptibility (Fig. 6.3), the concentration x of the diluted compound

(TbxY1−x)PtIn is x = 0.024, whereas the high field magnetization equals ∼ 5.6 µB/Tb3+.

(If we assume the high field magnetization to be ∼ 6.25µB/Tb3+, as expected based on the

model described below, the resulting concentration will be x = 0.019).
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Figure 6.2 (a) Low-temperature d(χave ∗ T )/dT , with vertical dotted lines
marking the peaks positions; (b) specific heat Cp(T ); inset:
magnetic entropy Sm(T ); (c) low-temperature resistivity ρ(T ),
for current flowing in the basal plane (i ‖ ab).
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Figure 6.3 Anisotropic inverse susceptibility (symbols) and calculated av-
erage (line) for H = 1 kG, for TbxY1−xPtIn (x = 0.025); upper
inset: low- temperature anisotropic susceptibility; lower inset:
field-dependent anisotropic magnetization, for T = 2 K.

For temperatures higher than 150 K, Curie-Weiss behavior of the pure TbPtIn compound

can be inferred (Fig. 6.1) from the linear inverse susceptibilities, resulting in anisotropic Weiss

temperatures Θab = 39.0 K and Θc = 23.3 K. The polycrystalline average susceptibility

χave yielded an effective moment µeff = 9.74µB/Tb3+, very close to the theoretical value

9.72 µB; the corresponding Weiss temperature is Θave = 33.3 K.

The field dependent magnetization measurements shown in Fig. 6.4a not only confirm the

in-plane/out-of-plane anisotropy observed in the ordered state, but also indicate anisotropic

magnetization within the basal plane. Moreover, several metamagnetic transitions can be seen

for the field parallel to the ab-plane, for fields up to 140 kG in the M(H) data, and for the

magnetoresistance measurements up to 90 kG in Fig. 6.4b. The geometry of the crystals

led to more uncertainty in orienting the resistance pieces than the ones for magnetization
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measurements; therefore we can infer the approximate orientation of the magnetoresistance

sample with respect to the applied field, by comparing the ∆ρ(H)/ρ(0) data (Fig. 6.4b)

with the M(H) curves for H||ab (Fig. 6.4a): since various features in the magnetoresistance

measurements occur closer to the critical fields in M([120]), we can assume that the field was

almost parallel to the [120] direction. (The sharp drop in ρ(H) below ∼ 1 kG (Fig. 6.4b) is

very likely due to superconductivity of residual In flux on the surface of our resistance bar).

For H along the c-axis, the magnetization increases almost linearly with increasing field (Fig.

6.4a), while staying far smaller than Mab.
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Figure 6.4 (a) Anisotropic field-dependent magnetization (increasing and
decreasing field data indicated by arrows) and (b) transverse
magnetoresistance, for increasing (symbols) and decreasing
(line) field.
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At the highest applied field (H = 140 kG), the magnetization values for the three shown

orientations are M([110]) = 5.86 µB/Tb, M([120]) = 6.45 µB/Tb and M([001]) = 0.92 µB/Tb.

Whereas the extreme planar anisotropy of TbPtIn and the anisotropy within the ab-plane rec-

ommended this compound for a study of the angular dependent metamagnetism, the fact that

the magnetization values were smaller in all three directions than the calculated µsat = 9µB

for Tb3+ ions is somewhat intriguing. One plausible explanation for the low magnetization

values would be the existence of more metamagnetic transitions for fields unaccessible with

our measurement systems (i.e. above 140 kG). Another possibility is that an additional energy

scale (such as CEF splitting) exists, that confines the three local moments to three distinct,

non-collinear, in-plane orientations. As shall be shown below, we believe the latter to be the

more likely scenario.
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Figure 6.5 M(θ) of TbPtIn (full circles) and Tb0.025Y0.975PtIn (open cir-
cles) for T = 2 K and H = 55 kG, H⊥c. Solid line represents
the calculated Mmax ∗ cos(θ−n∗600), n-integer. Note: θ = 00

is defined at the [120] direction.
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In order to determine the easy axes of the system, we continuously rotated a small piece of

the diluted sample (TbxY1−x)PtIn (x ≈ 0.02) in an applied field H = 55 kG (perpendicular

to c); for constant temperature T = 2 K, the corresponding magnetization measurement,

shown as open symbols in Fig. 6.5, roughly follows a cos θ dependence (solid line) around the

closest [120]-equivalent directions (i.e. θ = 600 ∗ n, n = integer), where the maxima occur.

As we have seen before, the concentration of the diluted sample is x = (0.0215 ± 0.0025);

given this uncertainty, the absolute value of the magnetization M(θ) in Fig. 6.5 could not be

determined, and thus we scaled the data to the maximum value, M(θ = 00). Similar behavior

appears in the pure TbPtIn compound (full symbols in Fig. 6.5), where the measured data

have also been scaled to their corresponding maximum value at θ = 00. We can conclude

that the easy axes of the TbPtIn system are the [120] directions. However dramatic departures

from the cos θ angular dependence can be noticed. The magnetization for TbPtIn, indicative

of strong interactions between the local moments, is also consistent with various metamagnetic

states crossing the H = 55 kG line at different angles. Based on the above data, we will

consider the easy axes to be the [120]-equivalent directions, and the angle θ will be measured

from the closest easy axis.

In order to get an idea about the various metamagnetic states in this compound, we first

explored changes of the critical fields and temperatures for two fixed orientations. The cor-

responding M(T ) |H,θ and M(H) |T,θ measurements shown in Fig. 6.6-6.7 have been used to

determine the H − T phase diagrams for the two in-plane high symmetry directions, H||[120]

and H||[110] respectively.

As illustrated in the insets in these figures, the points in these phase diagrams have been

determined from local maxima in d(M ∗ T )/dT (full circles in Fig. 6.8) for fixed fields, and

in dM/dH (open circles in Fig. 6.8) for various M(H) isotherms. Even though in Fisher et

al. (Fisher 1962) the maxima in d(M ∗T )/dT criterion is described only for antiferromagnetic

systems, we apply it here not only for the AF state, but also for high-field states, where the

magnetization has a net ferromagnetic component. We are confident that small errors are

thus introduced, given the consistency of the critical field and temperature values obtained
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Figure 6.6 M(T) data for various fields for two in-plane orientations of the
applied field: (a) H‖[120] for H = 1, 2, 7.5, 15, 20, 25, 30,
40, 45, 50 and 55 kG, and (b) H‖[110] for H = 1, 2.5, 3.5, 5,
7.5, 10, 15, 20, 26, 30, 37.5, 40, 42.5, 45, 50 and 55 kG. Insets
show enlarged M(T)*T derivatives (dotted lines) for H = 20 kG,
together with the Lorentzian fits of the maxima (solid lines), to
exemplify how the points represented by full symbols on the
H-T phase diagrams were determined.
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Figure 6.8 H-T phase diagrams for (a) H‖[120] and (c) H‖[110], as deter-
mined from the magnetization data in Fig. 6.6-6.7, with an
intermediate field orientation phase diagram (see text) shown
in (b).

from both d(M ∗ T )/dT and dM/dH derivatives (full and open symbols respectively in Fig.

6.8). Given that the transition peaks were broad for some field and temperature values, we

used Lorentzian fits of the corresponding derivatives (thick lines in Fig. 6.6 and 6.7, insets) to

determine the critical values Hc and Tc.

The resulting H − T phase diagrams for H||[120] (Fig. 6.8a) and H||[110] (Fig. 6.8c)

are qualitatively similar, at low temperatures and low fields showing the metamagnetic states

already seen in the M(H) data in Fig. 6.4. For H||[120], Fig. 6.8a shows that the antiferro-

magnetic ground state persists up to about 20 kG, followed by a small intermediate state M1

(between ∼ 20 kG and 28 kG) and a higher field state M2 up to ∼ 54 kG; as field is being

further increased, the paramagnetic PM state is reached, as already indicated in Fig. 6.4a by

the horizontal plateaux measured up to 140 kG. (At low temperatures, this is a crystal-field

limited saturated paramagnetic CL-SPM state, in which, as discussed below, all moments are

assumed to be in their ’up’ positions, while still confined by the strong CEF energy to three
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distinct, non-collinear directions within the basal plane.) When moving up in temperature

at low fields, we find the antiferromagnetic ground state to extend up to ∼ 27.4 K, whereas

the magnetic ordered state persists up to ∼ 46.0 K; both transition temperatures have been

already observed (Fig. 6.1 and 3). The M1 phase exists below ∼ 5.0 K, after which, for a

limited temperature range (5.0 K < T < 15.0 K), there is a direct transition from the AF

to the M2 state. Between 15.0 K and 27.4 K, or 18.4 kG and 2.0 kG respectively, another

intermediate phase, M4, forms. The inset in Fig. 6.7a represents an example of two isothermal

cuts of the [120] phase diagram in Fig. 6.8a: the phase boundaries of the bubble-like phase

M4 are very close in field at constant T, and so the lower peak in the T = 20.0 K isothermal

derivative dM/dH is poorly defined; the two higher peaks are fairly sharp, similar to the one

defining the M2 to PM transition in the T = 30.0 K isotherm. However, as we move down

in field along the latter isotherm, one broad peak around 15.4 K may indicate the crossing

of another almost horizontal phase boundary (leading into the M5 state), and thus hard to

identify in d(M ∗ T )/dT . One more peak at Hc ' 3.4 kG is indicative of possibly another

phase AF ′ existing below this field, between 28 K and 46.0 K. This is consistent with an anti-

ferromagnetic ordered state below 46.0 K, with an incommensurate-commensurate transition

around 28 K which frequently occurs in intermetallic compounds.

For H||[110] (Fig. 6.8c) the H−T phase diagram is fairly similar, with only a few differences:

a far less distinct M1 phase and a lower upper-boundary for the M2 region. However, the most

notable difference is a new high field phase, M3, whose upper boundary is determined by the

points indicated with small arrows in Fig. 6.6b. (As the field is being increased towards 140 kG,

this line becomes almost vertical, making it difficult to identify also in M(H)|T measurements.)

In order to see how the H − T phase diagram evolves from H||[120] to H||[110], we col-

lected comparable M(T )|H and M(H)|T data for an intermediate orientation of the applied

field (approximately 120 from the easy axis [120]). Fig. 6.9a shows these M(T ) curves for

H = 1− 70 kG, with the small arrows indicating the highest-T transition at each field value,

as determined from the d(M ∗ T )/dT maxima. Thus, the upper-most phase boundary in Fig.

6.8b, representing the phase diagram for this intermediate position, can be followed in field
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Figure 6.9 (a) M(T) data for various fields: H = 1 kG and 5-70 kG (∆H =
5 kG) for the intermediate field direction (see text). The small
arrows indicate the highest-field transitions at the correspond-
ing temperature. (b) M(H) for T = 10 K, and the corresponding
derivative, as an example of how the open symbols on the up-
per-most phase line in Fig. 6.8b have been determined.

up to H = 65 kG (full symbols). For this orientation, we can also identify this line in the

M(H) data, and an example is shown in Fig. 6.9b for the T = 10 K M(H) isotherm and

its dM/dH derivative. Overall, the features common to both Fig. 6.8a and c are also present

in Fig. 6.8b; moreover, in going from the [110] to the [120] direction, the M3 phase is being
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compressed, such that in the intermediate position the phase boundary separating it from PM

is fully delineated below 70 kG.

Given the clear in-plane anisotropy of the magnetization (Fig. 6.4-6.9), it becomes desirable

to systematically determine the angular dependence of the critical fields Hci,j(θ) and locally

saturated magnetizations Mj(θ) of the H⊥c metamagnetic transitions at T = 2 K.
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1.85 K (see text) isotherms. Arrows indicate the direction of
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Fig. 6.10 shows a series of magnetization isotherms (T = 2 K) measured at various angles

relative to the easy axis. The critical fields Hci,j , for the transition between states i and j,

were determined from maxima in dM/dH, as exemplified in Fig. 6.11, and are shown as full

symbols in Fig. 6.12a. In most cases, Lorentzian fits of the derivative peaks were used (solid

line in Fig. 6.11) to more accurately determine the critical field values. The open symbols in

Fig. 6.12 represent reflections of the measured data across the θ = 00 direction; whenever the

measured points extend beyond the 00..300 region, they almost coincide with the calculated

reflections, as expected for a symmetry direction.
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Figure 6.11 Enlarged M(H;θ = 120) plot, and the corresponding deriva-
tive, illustrating the criteria used in determining the points in
Fig. 6.12: large dot on the dM/dH plot indicates the critical
field value, determined by the maximum of the Lorentzian fit
(solid line) of the peak; straight lines on the M(H) plot are
fits to the magnetization plateau (thin), extrapolated down to
intersect the maximum-slope line (thick), giving the M2 value
(large dot). Note: the quality of the Lorentzian fit is represen-
tative of some of the poorer fits.

For θ ≤ 120 the antiferromagnetic AF ground state exists for fields up to about 20 kG,
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after which two closely spaced metamagnetic transitions occur, with critical fields, at θ = 00,

HcAF,1 = 20.5 kG (for the AF to M1 transition) and Hc1,2 = 27.7 kG (corresponding to the

transition from the M1 to the M2 state). A third transition from M2 to CL−SPM , around a

critical field Hc2,CL−SPM = 53.7 kG, changes very little with angle up to θ ≈ 80; for higher

angles, another metamagnetic state M3 forms, being delineated by two distinct critical fields,

Hc2,3 and Hc3,CL−SPM . As the former decreases with the angle, the latter soon reaches values

around the maximum field of 55 kG available in the SQUID magnetometer used for these

measurements. In order to follow this latest transition in higher magnetic fields, additional

measurements were taken in a different magnetometer, for fields up to 70 kG, and a slightly

different temperature (T = 1.85 K); these data are shown in the inset in Fig. 6.10a, but by

θ = 120, Hc3,CL−SPM becomes larger than 70 kG, therefore we can only anticipate that this

transition still exists for larger angles. (The H − T phase diagrams (Fig. 6.8b and c) seem to

indicate that this critical field value increases from ∼ 68 kG for θ ∼= 120, to more than 140 kG

at θ = 300). Slight differences can be noticed between the data sets taken in the two machines,

very likely due to the different temperatures at which they were taken. A linear scaling of the

two data sets by a factor of ∼ 1.07 was necessary, for both the magnetization values and the

critical fields; the scaling of the magnetization values can be explained by an assumption of

slightly different angles between the applied field and the rotator axis in each magnetometer,

while the field values may have changed with T according to the phase diagrams in Fig. 6.8.

After the scaling of the two data sets, and after additional calibration to the measurements

on the large mass 13.55 mg piece, the locally saturated magnetization values were determined.

The criterium used for determining the magnetization for each state (Mj), was the onset M(H)

value (Fig. 6.11), i.e., the intersection of the linear fit of the Mj2 magnetization plateau and

the highest-slope linear fit of the M(H) curve during the Mj1 to Mj2 transition. More attention

was given to determining the magnetization for the first state (M1), due to the limited field

range over which this state exists. Several criteria tried in this case (onset value, midpoint

between transitions, minimum in dM/dH or midpoint on the appropriate linear region on the

M(H) curves) resulted in almost identical angular dependencies of M1; moreover, using any
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of the aforementioned criteria, we were still unable to follow this state in the M(H) curves for

angles beyond 250.

For θ > 120, the similar two sets of measurements are shown in Fig. 6.10b. The same

criteria were used for the determination of Mj(θ) and Hci,j(θ). The two lower metamagnetic

transitions can also be seen in this region, while of the higher two, only Hc2,3 is within our field

range; as the angle increases, the first two transitions move closer in field (HcAF,1 increases,

while Hc1,2 doesn’t vary significantly with θ), such that the M1 state becomes very narrow,

making its determination very difficult. M2 and M3 however appear as well defined plateaus,

continuously decreasing, and increasing respectively, from the local extremum values seen at

θ = 00. Hc2,3 has a minimum of 38.9 kG around θ = 300.

The magnetization curves revealed four metamagnetic states, and their angular dependence

is presented in Fig. 6.12b: M1, M2 and MCL−SPM , which have local maxima at θ = 00

around 1.08 µB/Tb, 3.00 µB/Tb, and 6.25 µB/Tb respectively, and M3 which exists only

beyond θ = 80 and has a maximum of 5.06 µB/Tb at θ = 300. Similar to the Hci,j in Fig.

6.12a, the open symbols in Fig. 6.12b represent reflections of the measured data across the

θ = 00 (easy axis) direction.

The dotted lines in Fig. 6.12a and b are fits to Hci,j(θ) and Mj(θ) respectively, as calculated

based on the model that will be discussed below. Their angular dependencies are described

by 1 / cos(θ ± ϕj), and cos(θ ± ϕj) respectively, with ϕj = 00, 300 or 600. These values

are integer or half-integer multiples of 3600 / n, where n = 6 in our hexagonal system.

Considering the six-fold symmetry of the this compound, these simple geometrical relationships

render TbPtIn as very similar to RNi2B2C (Canfield, 1997a,b) or DyAgSb2 (Myers, 1999a),

tetragonal compounds where the analogues ϕj values were 00, 450 or 900 (integer or half-integer

multiples of 3600 / n, where n = 4).

As seen earlier in the cases of the tetragonal compounds HoNi2B2C (Canfield, 1997b) or

DyAgSb2 (Myers, 1999a), simple angular dependencies of the critical fields, as well as of the

locally saturated magnetizations exist in the hexagonal compound TbPtIn; this will be further

confirmed by similar geometrical relationships that appear to exist in TmAgGe.
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6.3 Data analysis

The field and temperature dependent magnetization measurements on TbPtIn (Fig. 6.1

and 6.4) have shown that this compound is extremely anisotropic, with the magnetic moments

confined to the hexagonal basal plane. Moreover, when the direction of the applied field is

varied within the basal plane, six fold anisotropy of the saturated magnetization is revealed

in both TbPtIn and its dilution (TbxY1−x)PtIn (Fig. 6.5). Consequently, detailed magne-

tization measurements with H⊥c were performed, allowing us to quantitatively describe the

angular dependencies of the critical fields Hci,j and locally saturated magnetizations Mj (Fig.

6.12). By analogy to the four-position clock model (Canfield, 1997b; Myers, 1999a; Kalatsky,

1998) for tetragonal systems, we are now proposing a simple model for the net distribution of

moments in the hexagonal compound TbPtIn: three co-planar Ising-like systems, 600 apart in

the basal plane. Such a hypothesis was first suggested by the high field magnetization values

observed in the pure compound TbPtIn, as well as in the highly diluted (TbxY1−x)PtIn. As

the maximum measured magnetization for TbPtIn was around 6 µB/Tb3+ (far smaller than

the calculated 9 µB value), it is reasonable to assume the existence of more metamagnetic

transitions beyond our maximum applied field H = 140 kG. However, in the highly diluted

compound, where, within our field and temperature ranges, we are only probing the para-

magnetic state, the magnetization also reaches only ∼ 6 µB/Tb3+ at the highest H. This is

consistent with the M = 6 µB/Tb3+ corresponding to a crystal-field limited saturated para-

magnetic (CL-SPM) state. Consequently we chose our model based on three Ising-systems

such that it described the hexagonal symmetry of the compound having three magnetic ions

in orthorhombic point symmetry, with the above value corresponding to saturation (in the

limit of high CEF energy). In order to verify this hypothesis, the expected angular depen-

dencies of possible moment configurations resulting from such a model will be compared with

our measurements. Furthermore, we will use our experimental results to refine the model,

by considering multiples of the three Ising-like systems, resulting in more complex angular

dependencies of the calculated magnetization and critical field values.

In the P62m space group, TbPtIn assumes a hexagonal crystal structure, with 3 Tb3+
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(a) (b)(a) (b)

Figure 6.13 Schematic representation of the three co-planar Ising-like sys-
tems model with three distinct R in the unit cell, sitting in
unique orthorhombic sites) in (a) the antiferromagnetic and
(b) the CL-SPM state. Solid arrows: ”up” and dotted arrows:
”down” orientations of the magnetic moments along the easy
axes.

ions at equivalent 3g (orthorhombic) sites. The fact that a strong CEF anisotropy confines

the local moments to the basal plane calls for a two dimensional model, greatly simplifying

the analysis. (A schematic description of an equivalent three-dimensional model has been

introduced for DyAgGe (Morosan, 2004)). Having three equivalent magnetic moments in

orthorhombic point symmetry, one possible way to achieve the overall hexagonal symmetry is

by restricting the moments to three of the six-fold symmetry axes, 600 apart, while allowing

for both the ’up’ (solid arrows) and ’down’ (dotted arrows) positions for a given direction

(Fig. 6.13). Any specific Tb-site would, at low temperatures, behave like an Ising system,

with each third of the sites having parallel Ising directions. Thus, each metamagnetic state of
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TbPtIn can be described by a multiple S of three Ising-like systems along three [120] equivalent

directions (the easy axes for this system). We will use ↖ , ↑ and ↗ symbols, to denote the

orientation of the three moments in their ’up’ positions, and↘ , ↓ and ↙ symbols respectively,

for the corresponding ’down’ positions. The order of the arrows is not meaningful for our

model; only the number of arrows for each orientation is significant for the net distribution of

moments. Moreover, we describe each metamagnetic state with the minimum-S value moment

configuration consistent with the experimental data. However, higher S values are possible for

most of the states, and information about the wave vectors (e.g. from scattering experiments)

would be required to determine unique S values.

Since in our experiments we only measure the projection of the magnetic moment along the

field direction, the angular dependence of the magnetization Mj per moment of an arbitrary 3

S-moments configuration is

Mj(θ)/µsat(Tb3+) = 1
3∗S [

∑S
i=1 mi∗cos(θ−600)+

∑S
i=1 mi∗cos θ +

∑S
i=1 mi∗cos(θ+600) ]

where θ is a continuous variable representing the angle between the applied field and the closest

easy axis (−300 ≤ θ ≤ 300), and the three sums give the magnetization value due to each

of the three directions of the Ising-like systems; the mi parameters equal ± 1, depending on

whether a certain moment is in the ’up’ (+ 1) or ’down’ (− 1) position for the respective

direction. We restrict our model description to the 00 ≤ θ ≤ 300 angular region, which, by

symmetry across the θ = 00 direction, also describes the −300 ≤ θ ≤ 00 region.

For S = 1, our model corresponds to one set of three such Ising-like systems. We assume

that in high applied fields, the three magnetic moments occupy the three allowed easy axes

closest to the direction of the field; as the field is lowered, the metamagnetic transitions occur

such that the measured magnetization is being decreased with H. In this hypothesis, there are

three distinct moment configurations for the system: (↖↑↗) for the CL-SPM state, (↘↑↗)

for intermediate field values, and (↘↑↙) for the AF ground state. The above formula yields

the following angular dependencies of the resulting longitudinal (measured) magnetizations:

2/3 ∗ cos θ, 2/3 ∗ cos(θ − 600) and 0 respectively, represented by open circles in Fig. 6.14.

Fig. 6.12b shows that such a model only describes the CL-SPM state:
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Figure 6.14 Calculated magnetizations as a function of θ, based on the
three coplanar Ising model : open circles - S = 1 and crosses-
S = 2 (see text for details).

MCL−SPM (θ)/µsat(Tb3+) = 2/3 ∗ cos θ

and the AF ground state MAF /µsat(Tb3+) = 0 of TbPtIn; according to the proposed model,

the local moment configurations from which the above angular dependencies follow are (↖↑↗)

and (↘↑↙) respectively. It is worth noting that the CL-SPM magnetization value, calculated

based on the above moment configuration, is 6 µB, smaller than the measured 6.25 µB. One

possible explanation is that with increasing field, the system is slowly approaching the CEF

splitting energy. This is also consistent with the increasing plateaus in the high field magneti-

zation data in Fig. 6.4a; however, the extrapolation of these plateaus down to H = 0 results

in smaller values for the [120] direction (6.13 µB) and the [110] direction (5.35 µB), closer to
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the calculated values (6.0 µB and
√

3/2 ∗ 6 µB = 5.2 µB respectively).

To characterize all the other observed metamagnetic states, larger S-values are needed,

i.e., the local moment configurations are described by an integer multiple S > 1 of sets of

three Ising-like systems. Fig. 6.14 (crosses) also shows all possible angular dependencies of the

magnetizations resulting from such a generalized model when S = 2. By comparison with

the experimental data, it appears from Fig. 6.12b that two more metamagnetic states can now

be described with S = 2:

M3(θ)/µsat(Tb3+) = 2
√

3/6 ∗ cos(θ − 300) (moment configuration (↖↖↑↑↙↗) ),

and

M2(θ)/µsat(Tb3+) = 2/6 ∗ cos θ (moment configuration (↘↖↑↑↙↗) ) .

There is still one more metamagnetic state, M1, which cannot be described within the

S = 2 model; however, for most of the angular range, its magnetization has an angular de-

pendence consistent with: M1(θ)/µsat(Tb3+) = 2/18 ∗ cos θ. The cos θ dependence (i.e. cos

is an even function) requires that the moment configuration be symmetric with respect to the

θ = 00 direction. The simplest possibility is (↖↑↗), for which the magnetization varies as

2/3∗cos θ; to this, a number of sets of three moments needs to be added, with zero net magneti-

zation (e.g. multiples of (↘↑↙) or (↘↖↑↓↙↗)), to get a resulting magnetization amplitude

of 2/18. Consequently a minimum S = 6 configuration (↘↘↘↘↘↖↑↑↑↑↑↑↙↙↙↙↙↗)

or (↘↘↘↖↖↖↓↓↑↑↑↑↙↙↙↗↗↗) yields the desired calculated magnetization 2/18∗cos θ.

Assuming the above net distributions of moments for the observed metamagnetic states,

one can derive the expected angular dependencies of the critical fields. Comparison between

the data in Fig. 6.12a and these calculated Hci,j(θ) values will further confirm or refute the

net distributions of moments proposed above.

Since the energy associated with a magnetic moment
−→
M in an applied field

−→
H is

−→
M · −→H

(Myers, 1999a), the corresponding energy difference ∆Eji between metamagnetic states
−→
Mi

and
−→
Mj is:

∆Eji =
−→
Mj · −→H −−→Mi · −→H

If there is a critical energy Ec = ∆Eji to be exceeded for a metamagnetic transition between



124

states i and j to occur, than the critical field value is given by:

Hci,j = Ec
Mj−Mi

,

where Mj and Mi are the measured (projections along the field) respective magnetizations. The

numerator in the above expression is angle and field independent, and the angular dependence

of Hci,j follows only from the denominator. In other words,

Hci,j ∼ 1
Mj−Mi

.

Consequently, the expected critical field values, shown as dotted lines in Fig. 6.12a, are:

HcAF,1(θ) ∼ 1/ cos θ,

Hc1,2(θ) ∼ 1/ cos θ,

Hc2,3(θ) ∼ 1/ cos(θ − 600),

Hc3,CL−SPM (θ) ∼ 1/ cos(θ + 600)

and Hc2,CL−SPM (θ) ∼ 1/ cos θ.

The reflections across the θ = 00 direction result from the above formulas, when substi-

tuting θ with −θ; moreover, since cos is an even function, this is equivalent to a change in sign

only for the ϕ in the above expressions written as 1/ cos(θ − ϕ).

As described above and similar to the analogous study in the tetragonal compound HoNi2B2C

(Canfield, 1997b), in most cases we used maxima in dM/dH, and not the on-set criterion, to

determine the critical field values, because the magnetizations during the transition were not

always linear; however, comparison with the calculated critical fields based on the above model

is still appropriate, given that only small departures from linearity were encountered, mostly

close to the bordering states (Mi and Mj). (The non-linear change of the magnetization with

increasing field indicates that other factors (i.e. the demagnetization factor of the sample

(Suzuki, 2002), coexistence of more than two phases, non-linear superposition of the various

states) may be responsible for the broadening of the transition).

Comparison of the measured critical fields and locally saturated magnetizations (Fig.

6.12a,b full and open symbols) with the calculated values as described above (Fig. 6.12a,b

dotted lines) confirms, in most cases, the assumed local distribution of moments. However, the

first metamagnetic state M1 follows well the calculated 2/18 ∗ µsat(Tb3+) ∗ cos(θ) dependence
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up to θ ≈ 250, after which it is difficult to determine it with reasonable accuracy. Despite the

fact that both HcAF,1 and Hc1,2 should depend on this magnetization value, the former fol-

lows the expected angular dependence fairly well, whereas the latter falls under the calculated

1/ cos θ curve. Even though at this point we don’t have a rigorous calculation to support our

assumption, we anticipate that the proximity of the two lowest transitions requires a calcu-

lation with more than two coexisting phases, which may render a better fit of the observed

experimental data in this region. On the other hand, the Hc2,3 and Hc3,CL−SPM critical fields,

which have the most evident angular dependence, are well fitted by the calculated functions

based on the present model. It is thus reasonable to assume that, whereas possibilities for

refining the model exist, in the simple form that we present here it describes our system fairly

well.

The polar plot in Fig. 6.15 helps in understanding how the hexagonal crystal structure of

this compound is reflected in the angular dependence of the metamagnetic phase transitions:

similar to the polar phase diagrams for tetragonal compounds HoNi2B2C (Kalatsky, 1998) or

DyAgSb2 (Myers, 1999a), when we plot Hc ∗ sin θ vs. Hc ∗ cos θ, the phase boundaries become

straight lines, with slopes equal to either ± 1/
√

3 or ∞. These slopes correspond to directions

either parallel or perpendicular to the high symmetry axes (i.e. [110] or [120]) in the hexagonal

structure, just as within the four position clock model the corresponding phase lines were either

parallel or perpendicular to the tetragonal high symmetry axes ([110] or [010]). As described

in Myers et al. (Myers, 1999a), the equations of these straight lines in polar coordinates can

be used to verify the transitions already discussed: if we substitute the above slope values in

the general formula

R(θ) = a/(sin θ − b ∗ cos θ),

for a line with slope b, we get:

Hc(θ) ∼ 1/ cos θ for b = ∞
Hc(θ) ∼ 1/ cos(θ − 600) for b = − 1/

√
3, or

Hc(θ) ∼ 1/ cos(θ + 600) for b = 1/
√

3,

which are consistent with the angular dependencies of the transitions determined above.
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Figure 6.15 Polar plot of the critical fields Hci,j , with one possible moment
configuration shown for each observed metamagnetic state;
open symbols represent reflections of the measured data -full
symbols- across the θ = 00 direction (see text).

For the most part, the experimental points fall onto the calculated straight lines, as ex-

pected. Some deviations from the straight lines can be noticed, with the most evident one for

Hc1,2, for which we already emphasized the necessity of a more complex model. In a similar

manner (even though only for fewer angles), Hc2,3 curves under the calculated straight line as

we move away from the [120] easy axis, while some even smaller deviations from linearity are

apparent in HcAF,1; this may indicate that special attention needs to be paid in determining

the angular dependence of the critical fields, when rotating from the proximity of one easy axis

to another.
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6.4 TmAgGe

We already reported the basic magnetic properties of TmAgGe (Morosan 2004), which

strongly resemble those of TbPtIn: the magnetic susceptibility is extremely anisotropic (Fig.

5.23), indicating antiferromagnetic order below TN = 4.2 K. The local magnetic moments are

confined by the strong CEF anisotropy to the basal plane, both below and above TN . This can

also be seen in the field dependent magnetization measurements, shown in Fig. 5.26a, where

in-plane anisotropy of the ordered state is also apparent. Similar to the case of TbPtIn, several

metamagnetic transitions exist for both H||[110] and H||[120]; these result in magnetization

values of 4.92 µB and 4.30 µB respectively, at H = 70 kG, far below µsat(Tm3+) = 7.0 µB,

whereas for the c direction, the magnetization is linear and much smaller up to the maximum

applied field. The ratio of the two in-plane magnetizations is M([120])
M([110]) = 0.87, close to the

cos 300 value expected within the model described before for TbPtIn for the CL-SPM state.

However, the two absolute values are larger than the corresponding ones, calculated from the

above model: M([110]) = 4.67µB and M([120]) = 4.00 µB, but the extrapolation of the

high-field plateaus down to H = 0 (solid lines in Fig. 5.26a) yields magnetizations very close

to these calculated values. As in the case of TbPtIn, the slight increase of the magnetization

plateaus after the supposed saturation may be caused by the slow approach of the CEF splitting

energy.

In calculating the above expected magnetization values, we assumed the easy axes to be

along the [110]-equivalent directions, based on the directions where maximum magnetization

values at H = 70 kG were achieved (Fig. 5.26a). This is consistent with the angular

dependent magnetization measurement for H = 70 kG shown in Fig. 6.16, where angle θ

was measured from the [110] direction; thus the six-fold symmetric magnetization has maxima

occurring for the [110]-equivalent directions (i.e. for θ = n ∗ 600, where n is an integer).

Consequently, for TmAgGe the angle θ will be measured from the closest [110] easy axis. The

comparison of TmAgGe and TbPtIn indicates that, even though the easy axes in the two

compounds correspond to the two different sets of six-fold symmetry directions, as we shall

see, their physical properties are very similar.
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Figure 6.16 M(θ) of TmAgGe (full symbols) at T = 2 K and H
= 70 kG, H⊥c. Solid line: calculated magnetization
Mmax ∗ cos(θ−n ∗ 600), n-integer. Note: θ = 00 is defined at
the [110] direction.

Around each easy axis, these magnetization measurements follow the cos θ angular depen-

dence (the solid line in Fig. 6.16), as expected within our proposed model. Some differences

between the the experimental data (filled circles in Fig. 6.16) and the magnetization could be

caused by small misalignment of the sample (rendering slightly asymmetric measured peaks),

or by the strong interactions between the local moments. Similar to TbPtIn, this also indicates

that different metamagnetic states cross H = 70 kG at different angles.

From the M(T ) |H,θ (Fig. 6.17) and M(H) |T,θ (Fig. 6.18) measurements, detailed H−T

phase diagrams for this compound can be determined. They are shown in Fig. 6.19a,c, for field

along the [110] or θ = 00, and [120] or θ = 300 directions respectively, with an intermediate-

position θ ≈ 240 phase diagram in Fig. 6.19b. In the same manner used for TbPtIn, the

points in these phase diagrams have been obtained from maxima in either d(M ∗T/H)/dT for
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Figure 6.17 (a) M(T) data for H = 1, 5 kG and 10 - 70 kG (∆H = 10
kG) for H‖[120], with enlarged high-field data in the inset; (b)
M*T derivatives for H = 50, 60 and 70 kG, together with the
Lorentzian fits of the maxima (solid lines), illustrating how the
vertical line in Fig.22c was determined for high applied fields.

constant field (full symbols) or in dM/dH for fixed temperatures (open symbols).

For H||[110] (Fig. 6.19a), at low temperatures the antiferromagnetic, AF, ground state

exists for H ≤ 3.1 kG, followed by a small intermediate phase M1 (up to ∼ 4.4 kG)

and a larger state M2 above. This latest phase extends up to 8.9 kG, after which, at low

temperatures, the system reaches the crystal field-limited saturated paramagnetic, CL-SPM,

state. As temperature is increased, the M1 phase disappears around 2.5 K , and a direct
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Figure 6.18 M(H) isotherms for T = 1.85, 2 − 4 K (∆T = 0.25 K),
4.2 and 4.6 K for (a) H‖[120] and (b) H‖[110]; insets show the
enlarged data around the metamagnetic transitions. (Arrows
indicate direction of increasing T.)

transition from the AF to the M2 state occurs at a decreasing critical field value. The upper

phase boundary (for the M2 to the PM state transition) also falls down in field as T increases,

such that at very low fields only one transition is observed close to TN = 4.2 K.

As we rotate away from the easy axis, the low-field phase diagram changes very little, with

a small enhancement of the critical field values towards low temperatures. As field is being
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Figure 6.19 H-T phase diagrams for TmAgGe, with (a) H‖[110] and (c)
H‖[120], as determined from magnetization data in Fig.20-21;
(b) intermediate-position phase diagram (see text); the error
bar shown in inset of (b) represents the range of values for the
high-field line, as determined from Fig. 6.20.

increased, M2 is getting smaller as a new distinct phase M3 forms. Its upper bordering line

appears to have a strong angular dependence, as can be seen in Fig. 6.19b and c, similar to the

upper-most phase boundary seen in TbPtIn : for H||[120] (Fig. 6.19c), this phase boundary

is an almost vertical line at T ≈ 4.5K, up to our maximum applied field H = 70 kG.

As a consequence, the corresponding points on this line have been determined from d(M ∗
T/H)/dT data, as shown in Fig. 6.17c for high fields, and could not be identified in the field-

dependent derivatives. At low temperatures, the HcAF,1 and Hc1,2 values (3.62 kG and 4.86

kG respectively) are very close to the corresponding ones in the [110] direction, whereas the

M2 to M3 transition occurs around 7.0 kG. These three phase lines merge around T = 3.0

K, such that for higher temperatures a single transition occurs at decreasing fields. This line
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appears to intersect the H = 0 axis around TN = 4.2 K.
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Figure 6.20 M(H) for T = 1.85 K (symbols), and the corresponding deriva-
tive (line). The inset shows an enlargement around the high
field transition, to exemplify the two criteria used for deter-
mining this critical field (see text). Note: the error bar shown
in the inset (determined from the position of the peaks in the
derivative) gives a caliper of the uncertainty in determining
this critical field value.

The intermediate-orientation phase diagram presented in Fig. 6.19b allowed us to observe

the upper-most phase line moving down in field at low temperatures, such that for θ ≈ 240,

it intersects the T = 0 axis close to 40.1 kG. In this orientation, this phase boundary can be

identified in the M(H) derivative, as shown in Fig. 6.19 for T = 1.85 K. However, the high

field peak in dM/dH is poorly defined, making the determination of the corresponding critical

field value more difficult. For a more precise estimate, another criterium was used together

with the derivative maxima, as illustrated in the inset in Fig. 6.19: the mid-point (large dot)

on the highest-slope linear fit (solid line) of the magnetization data around the transition. Also

shown is the error bar for this critical field value, as determined from the two criteria used

here.
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The fact that this line is now apparent in both M(T ) and M(H) data is further confirmation

that this phase boundary exists, whereas at lower fields, the only noticeable difference from the

H||[120] direction is the persistence of the M2 state up to higher (i.e. ∼ 3.5 K) temperatures.

A number of similarities between TbPtIn and TmAgGe have already been established: same

crystal structure, antiferromagnetic ground state, extremely anisotropic magnetization, in-

plane anisotropy and metamagnetism leading to crystal field-limited saturated magnetizations

smaller than the calculated single ion µsat values. As a consequence, we proceed to study the

angular dependence of the planar metamagnetism in TmAgGe, and subsequently apply the

model developed for TbPtIn to the case of this compound.

When we fix the temperature at T = 2 K, the angular dependence of the metamagnetic

transitions can be studied based on the M(H) isotherms shown in Fig. 6.21. The critical

fields and the locally saturated magnetization values (full symbols in Fig. 6.22) have been

determined as maxima in dM/dH, and from on-set values respectively (see the TbPtIn section).

An exception was made for MCL−SPM above 100, and the criterion used for determining this

state is described below. Moreover, because of the proximity of the first two transitions, the

M1 state is poorly defined; no precise saturated magnetization data could be extracted for this

state, but the phase diagrams in Fig. 6.19, as well as the angular dependent critical fields in

Fig. 6.22a, are consistent with the existence of this phase. As before, the open symbols in Fig.

6.22 represent reflections of the measured data across the θ = 00 direction. The TmAgGe

measurements allowed us to determine the critical field and locally saturated magnetization

values for the full angular range (−300 ≤ θ ≤ 300); the resulting somewhat asymmetric

data (most obvious in the case of the M2 data) maybe due to a small sample misalignment.

The experimental data (full symbols) together with the reflections (open symbols) in Fig. 6.22

give the caliper of the error bars for these measurements.

For θ ≤ 100, two closely spaced metamagnetic transitions can be seen in Fig. 6.22a, with

critical fields HcAF,1 = 3.0 kG and Hc1,2 = 4.37 kG respectively at θ = 00, followed by

a third transition Hc2,CL−SPM at ∼ 9.37 kG. It should be noted that these Hci,j values are

slightly different from the corresponding ones (3.10 kG, 4.36 kG and 8.92 kG respectively at
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T = 2.0 K, θ = 00) in the H−T phase diagrams (Fig. 6.19a), as they have been determined

from two distinct measurements. Thus small errors in the angular position (± 10) may convert

into small errors in the critical field values (≤ 3%).

Somewhat larger differences between the two data sets are observed for θ ≥ 100, specifically
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136

for Hc3,CL−SPM , which varies more rapidly with the angle than any other critical field. In this

angular region, the two lower transitions occur at almost the same critical fields as below 100,

whereas the critical field for the third one slowly decreases with angle, as a fourth transition

appears and rapidly moves up in field. Consequently, the M1 metamagnetic state changes little

with the angle, whereas the M2 state narrows down as the bordering critical fields move closer

to each other. The fourth transition being very broad makes the determination of the M3 state

fairly difficult. Also, with Hc3,CL−SPM broadening out and rapidly moving towards our field

limit (i.e. 70 kG), it was difficult to get a meaningful linear fit of the M(H) curves during

the M3 to CL− SPM transition; instead we used the intersection of the maximum slope line

corresponding to the M2 to M3 transition, and the best linear fit of the highest magnetization

state, to determine MCL−SPM for θ ≥ 100 (Fig. 6.21b, inset).

The best fits to the experimentally measured angular dependent data are shown in Fig.

6.22 as dotted lines. We will use these fits to infer the net distribution of moments as multiples

S of three Ising-like systems, similar to the case of TbPtIn. As mentioned before, we infer that

the M1 state should exist based on the angular dependent critical fields in Fig. 6.22a, and the

T = 2.0 K metamagnetic phases revealed by the phase diagrams in Fig. 6.19. Consequently,

in Fig. 6.22b we are only showing the expected angular dependence of such a phase, by analogy

with the TbPtIn case: M calc
1 /µsat(Tm3+) = 2/18∗cosθ, which appears to be the upper limit of

these magnetization values, as indicated by the error bars shown in Fig. 6.22b. As already seen

for TbPtIn, the moment configuration that would result in such a M1 magnetization is a S = 6

state: (↘↘↘↘↘↖↑↑↑↑↑↑↙↙↙↙↙↗) or (↘↘↘↖↖↖↓↓↑↑↑↑↙↙↙↗↗↗). M2(θ) has

a maximum value at θ = 00 equal to 2.37 µB/Tm3+, close to 2/6 ∗ µsat(Tm3+) = 2/6 ∗
7µB/Tm3+, and a cos θ angular dependence. This suggests that a possible net distribution

of moments for this state, realized with a minimum S = 2, could be (↘↖↑↑↙↗). If

one local moment is flipped from its ↙ position to ↗ in the previous state, the resulting

state could be described by the (↘↖↑↑↗↗) configuration, whose magnetization varies as

2
√

3/6 ∗ µsat(Tm3+) ∗ cos(θ − 300); this fits well the measured M3 data, indicating that the

previously assumed local moment distribution may be appropriate for this metamagnetic state.
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When all the magnetic moments are in their ’up’ positions, the CL-SPM (↖↖↑↑↗↗) state

is achieved, and the corresponding angular dependence is 4/6 ∗ µsat(Tm3+) ∗ cos θ. This best

describes the last observed metamagnetic state, which has a maximum of 4.68µB/Tm3+ around

θ = 00, very close to 4/6 ∗ µsat(Tm3+) = 4/6 ∗ 7µB/Tm3+. (As before, the order of the

arrows used to describe the net distribution of moments has no physical meaning).

According to the calculation given in the case of TbPtIn, for TmAgGe one would also

expect the critical fields to vary with the angle θ as

Hci,j ∼ 1
Mj−Mi

.

Using the net distributions of moments assumed above to best describe the locally saturated

magnetization states, we expect the following angular dependencies of the critical fields:

HcAF,1(θ) ∼ 1/ cos θ,

Hc1,2(θ) ∼ 1/ cos θ

Hc2,3(θ) ∼ 1/ cos(θ − 600),

Hc3,CL−SPM ∼ 1/ cos(θ + 600)

and Hc2,CL−SPM (θ) ∼ 1/ cos θ.

The experimental data (full symbols in Fig. 6.22a) are in good agreement with these

calculated critical fields, with Hc2,CL−SPM (θ) present only for θ ≤ 100, while the Hc2,3 and

Hc3,CL−SPM exist only for θ ≥ 100. This is consistent with the presence of the M3 state for

angles larger than 100, even though experimentally we were only able to accurately determine

it for θ ≥ 160. (The bordering transitions of this state are very close in field when θ is

close to 100, which made the determination of M3 in this angular region difficult). It is worth

pointing out the excellent fit of the measured Hc3,CL−SPM data with the calculated angular

dependency, this transition showing the most dramatic change with the angle θ.

Apart from the absolute values of the critical fields and the locally saturated magnetiza-

tions, the Hc(θ) and Msat(θ) phase diagrams for TmAgGe (Fig. 6.22) are identical to the

TbPtIn analogues in Fig. 6.12: to the same number of critical fields with identical angular

dependencies correspond identical metamagnetic values (scaled to the saturated moment of

the respective R3+ ion), which also vary similarly with the angle. This is consistent with our
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model being indeed a general description of the Fe2P-type systems, or even more generally, of

hexagonal systems with the R in orthorhombic point symmetry.
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Figure 6.23 Polar plot of the critical fields Hc, with one of the possible
moment configurations shown for each observed metamagnetic
state.

When the Hc(θ) phase diagram for TmAgGe is converted into a polar plot (Fig. 6.23),

similar to that for TbPtIn, we again notice that the phase boundaries are straight lines, with

± 1/
√

3 or ∞ slopes. From the equations of these straight lines, we can once more confirm the

transitions determined before:
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Hc(θ) ∼ 1/ cos θ for b = ∞
Hc(θ) ∼ 1/ cos(θ − 600) for b = − 1/

√
3, or

Hc(θ) ∼ 1/ cos(θ + 600) for b = 1/
√

3.

As already noted, in the case of TmAgGe, we were able to determine the critical fields

from experimental data for θ = − 300 .. 300, as seen in the phase diagrams in Fig. 6.22a,

as well as in Fig. 6.23. Slight differences between the expected straight lines in Fig. 6.23 and

measured critical fields can be noticed for Hc2,3 for angles close to ± 300, or for Hc3,CL−SPM

also for large angles; besides being a consequence of small misorientation of the sample, this

may indicate, similar to the TbPtIn case, that a more complex model needs to be used to

describe the regions around the ’hard’ in-plane direction.

6.5 Angular dependent metamagnetism at T = 20 K in TbPtIn

Whereas TmAgGe has fairly simple H − T phase diagrams, with all metamagnetic phases

present at low temperatures, the TbPtIn phase diagrams are somewhat more complex, man-

ifesting an additional intermediate-temperature phase, M4 (Fig. 6.8). In order to perform a

similar angular dependent study of this metamagnetic state, a set of M(H) |θ data was taken

at T = 20 K. Assuming that all existing transitions have been identified and are shown in

Fig. 6.8 (at least below 20 K), at this temperature the M(H) curves should intersect the

same magnetic phases as in the low temperature case, with the exception of M1; instead, the

measurements at T = 20 K intersect the bubble-like phase M4, as seen in the three different

orientations phase diagrams in Fig. 6.8.

Fig. 6.24 shows the M(H) isotherms at T = 20 K for various angles θ. The Mj(θ) and

Hci,j(θ) phase diagrams have been determined as described before for TbPtIn or TmAgGe

for T = 2 K, and are shown in Fig. 6.25. It should be noted that, due to the enhanced

temperature, all transitions are broadened, and the locally saturated magnetization plateaus

are no longer horizontal. Both of these facts make the analysis of these data somewhat harder

and more ambiguous.

For θ ≤ 120 (Fig. 6.25a), the lowest transition changes very little with angle, having
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Figure 6.24 M(H) isotherms at T = 20 K for (a) 00 ≤ θ ≤ 120 and
(b) 120 ≤ θ ≤ 300 (∆θ = 10); inset: enlarged M4 state.
Arrows indicate the direction of increasing θ.

a critical field value HcAF,4 ≈ 8 kG. As field is being increased, two more transitions can

be observed for angles lower than 80, with local minima of the critical fields, at θ = 00, of

Hc4,2 = 16.2 kG and Hc2,CL−SPM = 48.7 kG respectively. For larger angles, the highest

transition splits into two different ones, Hc2,3, with decreasing values as we rotate away from
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the easy axis, and Hc3,CL−SPM , which rapidly increases above our field limit (i.e. 55 kG)

around θ = 120. It should be noted that we are still referring to the high-field state at

T = 20 K as the crystal field-limited saturated paramagnetic CL-SPM state, even though it

is possible that cross-over to the paramagnetic PM state has occurred between 2 K and 20 K

at high H. (This would be a plausible explanation for the measured magnetization values for

this high field state being, as seen below, lower than the calculated values.)

The locally saturated magnetization of the M4 state is equal to ∼ 0.25 µB/Tb at θ = 00

and doesn’t appear to change much with the angle. According to the H − T phase diagrams

in Fig. 6.8, all higher metamagnetic states are identical at low (T = 2 K) temperature and

at T = 20 K; consequently, they seem to have similar angular dependencies (Fig. 6.25b): M2

and MCL−SPM have local maxima around 3.3µB/Tb and 5.7µB/Tb respectively, at θ = 00,

and slowly decrease with increasing angle in this region. Beyond ∼ 80, a third metamagnetic

state should exist, defined by the Hc2,3 and Hc3,CL−SPM critical fields; however, it is difficult

to identify it in this angular region, given the broadness of the bordering transitions and the

Hc3,CL−SPM proximity to our field limit.

As we move further away from the easy axis (i.e. θ > 120, Fig. 6.25b), the lower two

metamagnetic states can again be observed, whereas the CL-SPM state may still exist for fields

larger than 55 kG (also apparent from the H − T phase diagram in Fig. 6.8b). Also, we can

now see the third state M3 slowly increasing with angle θ, similar to the low temperature case.

The T = 20 K phase diagrams (Fig. 6.25) are very similar to their low temperature

analogues (Fig. 6.12), except for the M4 state, and some evident differences between the

experimental data and the model calculations (dotted lines). It was rather difficult to determine

the angular dependencies of M4 and M2, therefore we had to infer the possible theoretical fits in

a more indirect way: as we already mentioned, the state described by M2 at T = 20 K should

be the same as the corresponding one at low temperature, since they characterize the same

metamagnetic phase. Therefore we expect it to vary with the angle like 2/6∗µsat(Tb3+)∗cos θ

(Fig. 6.12b). For large angles, this is consistent with the measured data in Fig. 6.25b, whereas

significant deviations can be noticed closer to θ = 00. The lower magnetization state M4 has



143

much smaller values than any of the states characterized at T = 2 K, therefore we cannot fit

it accurately with a calculated angular dependence; however, Hc4,2 can be fitted with 16.2 kG

∗1/ cos θ and should relate to M4 through

Hc4,2(θ) ∼ 1/[M2(θ)−M4(θ)]

or

1/ cos θ ∼ 1/[ 2/6 ∗ µsat(Tb3+) ∗ cos θ −M4(θ)].

Thus M4(θ) should vary like Msat,4 ∗ cos θ, with a locally saturated magnetization Msat,4 ≈
0.25 ∗ µsat(Tb3+), but, as already mentioned, it is difficult to determine it with reasonable

accuracy. However, the corresponding local moment configuration should be similar to the

low temperature one, in order to get the cosθ dependence, except that the number S of three

Ising-like systems which would yield the appropriate Msat,4 value is uncertain.

All other locally saturated magnetizations and critical fields can be best fitted with the

same angular dependencies as for the low temperature case:

M3(θ) = 2
√

3/6 ∗ µsat(Tb3+) ∗ cos(θ − 300),

MCL−SPM (θ) = 4/6 ∗ µsat(Tb3+) ∗ cos θ,

and

HcAF,4 ∼ 1/ cos θ,

Hc2,3 ∼ 1/ cos(θ − 600),

Hc2,CL−SPM ∼ 1/ cos θ,

Hc3,CL−SPM ∼ 1/ cos(θ + 600).

Apart from the already mentioned differences between the measured data and the calcu-

lated curves, small departures from the corresponding theoretical angular dependencies can be

noticed for M3(θ) and Hc2,3; a more significant difference appears for the saturated magneti-

zation state MCL−SPM (θ), which seems to have the expected angular dependence, but with

smaller values than the calculated ones. This may be a high-temperature effect (i.e. cross-over

from low-T CL-SPM state to high-T paramagnetic PM state), or it may be one more indication

that a more refined model is needed.

A polar plot analogues to the low temperature case (Fig. 6.26) shows that at T = 20 K,
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the critical fields are still well described by straight lines, but with more pronounced differences

between experiment and the theoretical calculations. We attribute these to the thermal broad-

ening at this temperature, but, as already seen in the low temperature case, a requirement for

a more complex model cannot be excluded.

6.6 Summary

Motivated by the extensive work done on highly anisotropic local moment systems with

tetragonal unit cells and unique rare earth sites of tetragonal point symmetry, we have per-

formed detailed studies on two highly anisotropic, local moment, hexagonal compounds: TbPtIn
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and TmAgGe. Whereas both of these compounds are ternary members of the Fe2P class of

materials, they have different ligands. In addition, whereas both of these compounds mani-

fest extreme planar anisotropy, they have different easy axes: [120] for TbPtIn and [110] for

TmAgGe. Even with these differences we have found that these two compounds have very

similar H − T as well as H − θ phase diagrams.

TbPtIn and TmAgGe have a single rare earth site with orthorhombic point symmetry (with

three rare earth sites per unit cell) and both compounds have high field saturated moments well

below the single ion values. These two observations, combined with our experience with the

four position clock model that was developed for the tetragonal compounds with rare earths

in tetragonal symmetry, lead us to propose a similar model for these Fe2P-type compounds: a

triple coplanar Ising model, which consists of three Ising-like moments per unit cell, with their

Ising axes within the basal plane and rotated by 600 with respect to each other. This model

preserves the six-fold symmetry at high fields and also explains why the saturated moments

are significantly lower than the free ion values. By analyzing the magnitudes and angular de-

pendencies of the critical metamagnetic fields, as well as the locally saturated magnetizations

within the framework of this model, we can infer the net distribution of moments along the

six possible moment orientations. However, field-dependent neutron diffraction or magnetic

x-ray measurements are needed to test these hypothetical net distributions of moments and to

obtain the propagation vectors for each magnetically ordered state. (Some preliminary exper-

iments on TbPtIn are already reported (Garlea, 2004), confirming the two low-field ordering

temperatures that we observed in the magnetization measurements. Moreover, the neutron

data are consistent with our inferred direction of the moments.)

The successful extension of the four state clock model to the current triple coplanar Ising-

like model implies that a wider set of local moment compounds with planar anisotropy can be

understood in a similarly simple manner. Clearly tetragonal unit cell compounds with the rare

earth in orthorhombic point symmetry could be expected to behave in a manner similar to

TbPtIn and TmAgGe, i.e. to form a class of double coplanar Ising model materials. In a similar

manner, hexagonal unit cell compounds with the rare earth in hexagonal point symmetry could
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one magnetic moment with six possible orientations (arrows
along six high symmetry orientations in the basal plane); (d)
Triple coplanar Ising-like model : three R ions in unique or-
thorhombic point symmetry are needed in a hexagonal com-
pound (three Ising-like systems, 600 away from each other in
the basal plane); (e) A double coplanar three position clock
model can describe hexagonal systems with two magnetic mo-
ments in unique trigonal point symmetry position, with three
possible orientations (1200 away from each other in the basal
plane) for each. In all cases, the corresponding CL-SPM states
(described in text) are represented by full arrows (applied field
is assumed to be vertically up.
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be expected to behave in a manner similar to HoNi2B2C (Canfield, 1997b) or DyAgSb2 (Myers,

1999a), i.e., to form a class of six position clock model materials. Hexagonal unit cell materials

may offer one other, potentially new class of materials: highly planar anisotropic compounds

with the rare earth in trigonal point symmetry. In this case we anticipate a double coplanar

three position clock model. Such compounds would have two magnetic sites, each with three

possible positions 1200 apart. Fig. 6.27 gives schematic representations of all expected five

models described above.
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CHAPTER 7. Magnetic ordering and effects of crystal electric field

anisotropy in the hexagonal compounds RPtIn, R = Y, Gd - Lu∗

7.1 Introduction

The RPtIn compounds (R = Y, La-Sm, Gd-Lu) have been reported to crystallize in the

ZrNiAl hexagonal structure (Ferro, 1973; Zaremba, 2001; Galadzhun, 2000), space group P62m,

with the rare earth in orthorhombic point symmetry, whereas the R = Eu member of this series

forms in an orthorhombic TiNiSi-type structure (Pöttgen, 1996; Müllmann, 1998) (space group

Pnma). Magnetic and transport measurements on some of these materials revealed a variety

of physical properties across the series: CePtIn (Fujita, 1988; Kurisu, 1999; Yamaguchi, 1990;

Satoh, 1990) and YbPtIn (Trovarelli, 2000; Kaczorowski, 2000; Yoshii, 2004) appear to be dense

Kondo systems, with the electronic specific heat coefficient γ larger than 500 mJ/mol K2, and

430 mJ/mol K2 respectively; no magnetic order was observed in the former compound down

to 60 mK (Satoh, 1990), whereas the latter appears to order antiferromagnetically below 3.4

K (Trovarelli, 2000). In TbPtIn (Watson 1995) the antiferromagnetic nature of the magnetic

order below 50 K was indirectly suggested by the metamagnetic transitions observed in the

M(H) data below this temperature. Watson et al. (Watson 1995) have also reported that the

R = Gd and Dy members of this series have ferromagnetic ground states, with TC = 89 K,

and 38 K respectively, with reduced values of both the effective and the saturated moments

of these two compounds. Whereas for the Dy system, the disagreement with the respective

theoretical values could be attributed to crystal electric field CEF effects, it was unclear what

was causing it in GdPtIn. CEF effects are also apparent in the magnetization measurements
∗after ”Magnetic ordering and effects of crystal electric field anisotropy in the hexagonal compounds RPtIn,

R = Y, Gd - Lu”, E. Morosan, S. L. Bud’ko and P. C. Canfield, Phys. Rev. B (2005).
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on PrPtIn down to T = 1.7 K, which, together with the resistivity data (Zaremba, 2001)

suggest a possible ferromagnetic transition at lower temperatures. Similar data on SmPtIn are

indicative of ferromagnetic ordering in this compound below TC = 25 K.

We recently presented detailed magnetization and transport measurements on single crys-

tals of TbPtIn (Morosan 2005), and these data are discussed in detail in Chapter 6: anisotropic

low-field susceptibility and specific heat measurements confirm the antiferromagnetic ground

state, with TN = 46 K, slightly different than the previously reported value (Watson 1995);

below the ordering temperature, complex metamagnetism is revealed by magnetization mea-

surements with applied field in the basal plane. Whereas from the high-temperature inverse

susceptibility we obtained an effective moment µeff = 9.74 µB/Tb3+, close to the theoreti-

cal value 9.72 µB, the high-field magnetization data yielded values only up to ∼ 6 µB/Tb3+,

much smaller than the theoretical saturated moment of 9 µB. In order to explain the reduced

magnetization values, as well as the angular dependence of the metamagnetic properties, we

proposed a three co-planar Ising-like systems model, which took into account the orthorhombic

point symmetry of the rare earth ions in the hexagonal unit cell of the RPtIn compounds

(Morosan 2005). Within such a model, for applied magnetic fields far smaller than the CEF

splitting energy, for TbPtIn one expects a crystal field limited saturated paramagnetic CL-SPM

state equal to 6 µB.

In view of these existing magnetization and transport data, the magnetic ordering in the

heavy rare earth members of the RPtIn series was somewhat intriguing: whereas for GdPtIn

and DyPtIn, ferromagnetic ground states were reported, the intermediate R = Tb member ap-

pears to order antiferromagnetically, which is a rather unusual discontinuity for a magnetically

ordering local moment series.

In the present work we are trying to address this problem, and also extend the character-

ization of the physical properties to all the heavy RPtIn systems (i.e., for R = Y, Gd - Lu).

Having been able to grow single crystals for all of these compounds, we have the possibility of

determining the effect of the CEF anisotropy on their magnetic properties, more so than in the

previous studies on polycrystalline samples. As we shall see, the hexagonal crystal structure
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of these compounds, with three R ions in the unit cell occupying unique orthorhombic point

symmetry sites, is of crucial importance in explaining the moment configurations and magnetic

ordering in the RPtIn materials described here.

In presenting our data, we will start with the non-magnetic members of the RPtIn series,

R = Y and Lu; then we will continue with the magnetic ones (R = Gd - Tm), characterizing

each of the compounds by temperature- and field-dependent magnetization, as well as zero-

field specific heat measurements. A brief description of the previously reported (Trovarelli,

2000; Kaczorowski, 2000; Yoshii, 2004) heavy fermion compound YbPtIn is also included, our

measurements being performed, as with all the other R compounds, on solution-grown single

crystals.

Next we will briefly present the model for the magnetic moment configuration, characteriz-

ing the extremely planar TbPtIn compound (which is described in detail in Chapter 6); a more

generalized version of this model, extended to three dimensions, will then be used to describe

the magnetism in the other magnetic RPtIn compounds except YbPtIn.

7.2 Results

We are characterizing each compound by anisotropic magnetization and specific heat mea-

surements, starting with the non-magnetic YPtIn and LuPtIn members of the series. Next

the magnetic RPtIn will be introduced, for R = Gd to Tm. For each, we will emphasize the

nature of the ordered state together with the ordering temperatures, as well as the high field,

anisotropic magnetization data, as these provide key values in our discussion and analysis fol-

lowing the data presentation. Lastly, similar data on YbPtIn is presented, with a note that

a more detailed analysis of the heavy fermion character of this compound is the subject of

Chapter 9.

7.2.1 YPtIn and LuPtIn

The anisotropic susceptibilities of the two members of the RPtIn series with non-magnetic

R ion (R = Y and Lu) are very small and basically temperature-independent.
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Figure 7.1 Specific heat for YPtIn and LuPtIn, with low-temperature
CP / T vs. T2 shown in lower inset (linear fits of the low-T
data give γ in units of mJ / mol * K2); upper inset: entropy
difference ∆S (see text).

However, the dominant terms in the susceptibility data seem quite different for the two

compounds, as the average high-temperature values are positive in the case of YPtIn (around

(6.6 ± 0.7) × 10−5 emu/mol for H ‖ ab, and (4.6 ± 1.1) × 10−5 emu/mol for H ‖ c), and neg-

ative for LuPtIn (around (−3.8 ± 0.2) × 10−4 emu/mol for H ‖ ab, and (−4.5 ± 0.3) × 10−4

emu/mol for H ‖ c). (The core diamagnetic susceptibilities of Y and Lu (-12 × 10−5 emu/mol,

and -17 × 10−5 emu/mol respectively) are far too small to fully account for the above suscep-

tibility values in YPtIn and LuPtIn compounds.) The field-dependent magnetization values

for both compounds are extremely small, as expected for non-magnetic R compounds.

Heat capacity measurements in zero applied field were performed for the two systems, for

2 ≤ T ≤ 90 K. As seen in Fig. 7.1, they have similar temperature dependencies; the higher
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molecular weight for LuPtIn (and consequently the expected lower Debye temperature) could

explain the values of the specific heat data being larger for this compound than for YPtIn.

However, this does not account for the big entropy difference for these two systems (upper

inset). This estimated entropy difference has a fairly large value ∆ S ≈ 0.9 ∗ R ln 2 around

67 K, which, as we shall see, is the magnetic ordering temperature for GdPtIn. (The entropy

difference is still considerably large when the measured specific heat data are scaled by their

molecular weights, according to the Debye model.) Consequently, no meaningful magnetic

specific heat estimates can be made for the magnetic RPtIn compounds using either the R =

Y or Lu compounds as the non-magnetic analogues.

7.2.2 RPtIn, R = Gd - Tm

7.2.2.1 GdPtIn

The anisotropic H / M data for GdPtIn, together with the polycrystalline average, are

shown in Fig. 7.2. The inset presents the low-temperature M / H data for low applied field

(H = 100 G), measured on warming up after either zero-field cooling ZFC (symbols) or field

cooling FC (solid lines) of the sample. The paramagnetic susceptibility shows Curie-Weiss

behavior χ(T ) = C/(T + ΘW ) above ∼ 100 K. ΘW represents the Weiss temperature,

which can be determined from the linear fit of the high-temperature inverse susceptibility,

and the values corresponding to the two orientations of the field, as well as the one for the

polycrystalline average, are listed in Table 1. The inverse susceptibility data appear slightly

anisotropic, contrary to the expected isotropic paramagnetic state for a Gd compound. This

is possibly caused by the dominant anisotropic interaction in a pure S-state (i.e., L = 0)

compound (Jensen, 1991), also consistent with the different anisotropic Weiss temperatures

for this Gd system (see Table 1). The effective moment value determined from the linear

region in the inverse average susceptibility is µeff = 7.62 µB, comparable to the theoretical

value of 7.94 µB for the Gd3+ ions.

The field dependent magnetization data (Fig. 7.3) appears to indicate ferromagnetic or-

dering along the c-axis. Measurements performed for both increasing and decreasing applied
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Figure 7.2 Anisotropic H / M data of GdPtIn and calculated average (line)
at H = 1 kG, with the anisotropic ZFC - FC low-temperature
M / H data for H = 0.1 kG shown in the inset.

field reveal hysteresis loops for both H parallel and perpendicular to the c-axis. At H ≈ 50

kG, the magnetization saturates in both directions around the expected 7 µB/ Gd3+ value.

As the increase of the axial magnetization with field (i.e., for H ‖ c) is much faster than for

H ⊥ c, we are led to believe that the ferromagnetic exchange interaction favors moments’

alignment along the c-axis.

There is significant difference between the ZFC and the FC data in the ordered state for

both H ‖ ab and H ‖ c, with χc > χab in the low-temperature paramagnetic state

(inset Fig. 7.2). This is consistent with the magnetic moments ordering ferromagnetically

along the c-axis below the irreversibility temperature Tirr = 63.8 ± 1.9 K, as it has already

been reported on polycrystalline samples by Watson et al. (Watson 1995). The irreversibility

temperature for H ‖ ab is slightly different (∼ 65.2 K). Specific heat data is needed to

determine the magnetic ordering temperature, and using an on-set criterion (Fig. 7.4), the
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Figure 7.3 Anisotropic field-dependent magnetization loops for GdPtIn, at
T = 2 K.

Curie temperature was determined to be TC = 67.5 ± 0.5 K, larger than the anisotropic

Tirr values. In turn, this value is significantly lower than the previously reported ordering

temperature for the polycrystalline samples (Watson 1995). We believe that the discrepancies

in the ordering temperature estimates are due to the different criteria used for determining TC ,

as well as to the different types of samples used in the measurements, with the single crystal

data possibly being more accurate.

7.2.2.2 TbPtIn

We have already looked in detail at the magnetic and transport properties of TbPtIn

(Chapter 6): in contrast to the neighboring R = Gd member of the series, TbPtIn has an

antiferromagnetic ground state below TN = 46.0 K, with an extremely anisotropic, planar

susceptibility even in the paramagnetic state (Fig. 6.1). At higher temperatures, the inverse
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average susceptibility becomes linear, indicating Curie-Weiss like behavior. Extrapolation

of the polycrystalline linear fit down to low temperatures yields an effective moment value

µeff = 9.74 µB, in good agreement with the theoretical value 9.72 µB for Tb3+ ions. The

anisotropic Weiss temperatures were also determined, and the corresponding values are given in

Table 1. Another phase transition is apparent around Tm = 27.4 K, possibly associated with a

spin reorientation. This phase transition was obscured in the measurements on polycrystalline

samples (Watson 1995), whereas the TN value that we determined based on measurements on

single crystals is fairly close to the previously reported one.

As already seen by Morosan et al. (Morosan, 2005a), the TbPtIn specific heat shown in

Fig. 6.2b confirms the Néel temperature and the lower temperature transition at Tm (marked

by the vertical dotted lines). These transition temperatures are also consistent with those
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revealed by the d(Mave/H ∗ T )/dT (Fig. 6.2a) and ρ(T ) data (Fig. 6.2c), as expected for

antiferromagnetic compounds (Fisher, 1962).

Anisotropic field-dependent measurements at T = 2 K (Fig. 6.4) reveal the presence

of several metamagnetic transitions for field applied perpendicular to the hexagonal c-axis,

whereas for field along the c-axis an almost linear increase of the magnetization with field is

observed up to ∼ 140 kG. As emphasized by Morosan et al. (Morosan 2005), apart from

the extreme in-plane/out-of-plane anisotropy, there is also a complex angular dependence of

the observed metamagnetism for H ⊥ c. The full and open circles in Fig. 6.4a represent

the measurements corresponding to the two high symmetry in-plane directions of the applied

field (i.e., the [120] and [110] directions respectively), for increasing and decreasing fields. The

high-field magnetization values reach 6.45 µB / Tb3+ and 5.86 µB/ Tb3+ for the two in-plane

directions, and, within the three coplanar Ising-like model (Morosan, 2005a), correspond to

the crystal field limited saturated paramagnetic CL-SPM state. Also consistent with this

model in the low energy limit is the low value of the axial component of the magnetization

M([001]) = 0.92 µB / Tb3+. However, a slow increase of the high-field magnetization plateaus

is apparent for H ⊥ c; this, as well as the slow increase of Mc with the applied field, may be

due to the fact that the system is approaching the CEF splitting energy scale. Extrapolation

of the high-field magnetization data (solid lines in Fig. 6.4a) down to H = 0 leads to smaller

values (i.e., 6.13 µB, 5.86 µB and 0 for M([120]), M([110]), and M([001]) respectively), even

closer to the theoretical ones (Morosan, 2005a).

7.2.2.3 DyPtIn

So far we have seen that GdPtIn has a ferromagnetic ground state, with χc > χab in

the low-temperature paramagnetic state, whereas TbPtIn orders antiferromagnetically and is

extremely planar, even for a limited temperature range above TN .

As we move towards the heavier R members of the series, DyPtIn resembles more the R

= Gd compound rather than the neighboring R = Tb one: from the anisotropic H / M data

data shown in Fig. 7.5, it appears that DyPtIn has a linear inverse average susceptibility, from
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Figure 7.5 Anisotropic H / M data for DyPtIn and the calculated average
(line) at H = 1 kG; inset: ZFC-FC low-temperature anisotropic
M / H data for H = 0.1 kG.

which an effective moment µeff = 10.7 µB can be determined, consistent with the theoretical

value of 10.6 µB. The anisotropic inverse susceptibilities can also be used to determine the

Weiss temperatures, listed in Table.1 for both orientations of the field, as well as for the

polycrystalline average. Below ∼ 30 K, DyPtIn orders magnetically (the Curie temperature

TC will be determined from the specific heat data, shown below). The ordered-state M / H

data indicates a possible net ferromagnetic component along the c-axis. Moreover, ZFC and FC

data for H = 100 G (inset, Fig. 7.5) further confirm this hypothesis, given the irreversibility

of the χc data below ∼ 25 K, and no visible irreversibility for the χab data.

As previously seen for GdPtIn, a rather broad peak in the specific heat data (Fig. 7.6)

indicates the magnetic ordering of the DyPtIn. Using the on-set criterion, the Curie temper-

ature is determined to be TC = (26.5 ± 0.5) K, indicated by the small vertical arrow. The
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Figure 7.6 Specific heat CP (T ) of DyPtIn; small arrow indicates TC de-
termined from on-set (see text).

substantial difference between our estimates and those of Watson et al. (Watson, 1995) for the

ordering temperature, which appears to persist for all RPtIn members (R = Gd - Dy) described

so far, could be a consequence of the two sets of data having been collected on single crystal

or polycrystalline samples, respectively. However, for the ferromagnetic compounds, different

criteria used for determining the ordering temperature may also be causing the aforementioned

differences.

The field-dependent magnetization loops (− 55 kG ≤ H ≤ 55 kG) are shown in Fig.

7.7, for both H ‖ c and H ⊥ c. For the applied field along the c-axis (crosses), a small

hysteresis can be observed, whereas the magnetization rapidly increases towards a saturated-

like value around ∼ 6.88 µB / Dy3+. This is consistent with a ferromagnetic component of

the magnetization along the c-axis, which is well below the expected 10 µB saturated value

for Dy3+ ions. For H ⊥ c, a metamagnetic transition occurs around ∼ 37 kG, leading to
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Figure 7.7 Anisotropic field-dependent magnetization loops for DyPtIn, at
T = 2 K.

a state with the magnetization value around 4.98 µB, even smaller than the axial component.

As we shall see for the rest of the local-moment members of the series (R = Ho, Er, Tm),

the measured values of the magnetization at the highest applied field are far smaller than the

theoretical saturated values for the respective ions, for both H ‖ c and H ⊥ c. Starting from

the two-dimensional model already developed for TbPtIn (Morosan, 2005a), we will attempt

to generalize it to three dimensions such as to explain the nature of the ordered state across

the whole RPtIn series (R = Gd - Tm).

7.2.2.4 HoPtIn

HoPtIn has similar physical properties to GdPtIn and DyPtIn, and appears to conform to

some general characteristics of the RPtIn series, with the Tb member as an apparent exception:

axial ferromagnetic component of the ordered state magnetization, less than the theoretical



160

0 50 100 150 200 250 300
0

5

10

15

20

25

0 10 20 30 40 50
0

10

20

30

H=1kG
HoPtIn

 

 

H
/M

 (m
ol

e/
em

u)

T(K)

 HIIab
 HIIc
 average

 

 

M
/H

 (e
m

u/
m

ol
e)

T(K)

Figure 7.8 Anisotropic H / M data for HoPtIn and the calculated average
(line) at H = 1 kG; inset: low-temperature anisotropic M / H

data.

saturated values above ∼ 50 kG for both the axial and the planar magnetizations.

As can be seen in Fig. 7.8, the anisotropic inverse susceptibilities are linear at high tem-

peratures; from the polycrystalline average, we get an effective moment of 10.5 µB, close to

the theoretical value µeff (Ho3+) = 10.6 µB. The presence of the ferromagnetic component

of the ordered state is evidenced by the anisotropic M / H data featuring a large, broad peak

at low temperatures for H ‖ c (inset Fig. 7.8), with χc > χab in the low-temperature

paramagnetic state. In the specific heat data (Fig. 7.9), magnetic ordering is apparent below

TC = 23.5 ± 0.5 K, as indicated by the small arrow.

The idea of a ferromagnetic component of the magnetization is further confirmed by the

field dependent data in Fig. 7.10, where for the field applied in the c direction (crosses), the

magnetization rapidly increases with H. The maximum value reached within our field limits is

∼ 7.81 µB, less than the calculated saturated moment for Ho3+ ions. As the magnetic field is

applied parallel to the basal plane, the resulting magnetization curve is consistent with either
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a broad metamagnetic transition or with a continuous spin-flop transition. Around H = 55

kG, the in-plane component of the magnetization is 4.3 µB, even smaller than the axial one

and less than half of µsat(Ho3+).

7.2.2.5 ErPtIn

As TbPtIn appears to be an exception, the R = Er member of the RPtIn series follows

the already observed trends for the other heavy R compounds. The H / M average data

seen in Fig. 7.11a is linear towards high temperatures, indicative of Curie-Weiss behavior of

magnetization. However, crossing of the planar and axial inverse susceptibilities occurs around

150 K, possibly a result of strong crystal field effects at high temperatures in this compound.

Similar crossing of the anisotropic inverse susceptibilities was also observed for the R =

Er member of the RNi2B2C series (Cho 1995). The effective moment value extracted from

the high-T linear region of the inverse average susceptibility is µeff = 10.1 µB, close the

theoretical 9.6 µB value (within the accuracy of our data and fit).



162

0 10 20 30 40 50
0

2

4

6

8
HoPtIn
T = 2 K

 HoxY1-xPtIn (x~0.04)

 H||[120]
 H||[001] 

H II [001]

H II [120]

 

 

M
(

B/H
o)

H(kG)

Figure 7.10 Anisotropic field-dependent magnetization curves for HoPtIn
(symbols), and HoxY1−xPtIn, x ∼ 0.04 (lines), at T = 2 K.

The low temperature anisotropic H / M data shown in the inset is consistent with ferromag-

netic ground state, with χc > χab in the low-T paramagnetic state. The Curie temperature,

as determined from the specific heat data in Fig. 7.11b, is TC = 8.5 ± 0.5 K, as the small

arrow indicates.

From the field-dependent measurements in Fig. 7.12 we also infer that the magnetization

has a ferromagnetic component along the c-axis, as the corresponding data (crosses) rapidly

increase with field. Above ∼ 10 kG, the axial magnetization has an almost constant value

around 7.50 µB, whereas the theoretical saturated moment for Er3+ ions is 9 µB. When

H ⊥ c (open circles), the magnetization data is almost linear in field, with a weak hint of un

upward curvature around 20 kG, possibly indicating a metamagnetic transition. Towards 50

kG, the magnetization almost levels off around a 2.77 µB value, much lower than the expected

saturated moment.
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Figure 7.11 (a) Anisotropic H / M data for ErPtIn and the calculated
average (line) at H = 1 kG; inset: low-temperature anisotropic
M / H data; (b) Specific heat CP (T ) of ErPtIn; small arrow
indicates TC determined from on-set (see text).

7.2.2.6 TmPtIn

Having an antiferromagnetic ground state and a planar magnetization component larger

than the axial one, TbPtIn differs from the rest of the RPtIn compounds mentioned so far,

whereas below we show that it resembles the R = Tm member of this series.

The high temperature inverse susceptibility of TmPtIn (Fig. 7.13) is linear, yielding an

effective magnetic moment around 7.7 µB, close to the theoretical value calculated for Tm3+

ions, µeff = 7.6 µB. However, unlike the aforementioned members of the series (except

Tb), below ∼ 4 K this compound appears to order antiferromagnetically, as suggested by the

low-temperature susceptibility data in the inset. Sharp peaks in the susceptibility data around

TN are typically indicative of antiferromagnetic ordered state, as is the case with the H ‖ c

data (crosses) shown in the inset in Fig. 7.13. The similar peak for the in-plane susceptibility

(open circles) is somewhat broader, possibly due to spin fluctuations or CEF effects, which

result in reduced susceptibility values around the ordering temperature.

A peak in the specific heat (Fig. 7.14a) suggests that the magnetic order occurs at

TN = 3.0 ± 0.5 K, and, as expected for antiferromagnetic compounds (Fisher 1962), is

consistent with the d(Mave/H ∗ T )/dT data in Fig. 7.14b.
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Figure 7.12 Anisotropic field-dependent magnetization curves for ErPtIn,
at T = 2 K.

The T = 2 K magnetization isotherms (Fig. 7.15) indicate one (for H ‖ c) or more (for

H ‖ ab) metamagnetic transitions. Following these fairly broad transitions (due to the high

temperature, compared to TN , for which these data were taken), the magnetization curves

seem to approach some horizontal plateaus around 2.26 µB for the field along the c-axis, and

4.42 µB for the field within the ab-plane respectively. As for the other RPtIn (except for R =

Gd), both these values are much smaller than the calculated effective moment of 7 µB for the

Tm3+ ions.

7.2.3 YbPtIn

YbPtIn stands out from the rest of the RPtIn compounds through a number of distinctly

different properties. Fig. 7.16a shows the inverse anisotropic susceptibilities (symbols), to-

gether with the calculated polycrystalline average (solid line). The latter data is linear above

∼ 50 K, despite a pronounced departure from linearity of the axial inverse H / M data
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Figure 7.13 Anisotropic H / M data for TmPtIn and the calculated av-
erage (line) at H = 1 kG; inset: low-temperature anisotropic
M / H data.

(crosses) below ∼ 200 K, probably due to CEF effects. From the fit of the linear part of

the average H / M data, an effective moment of 4.3 µB/ Yb3+ can be determined, close to

the theoretical 4.5 µB/ value. For lower temperatures, no distinguishable features associated

with magnetic order are visible in the M / H data data down to 1.8 K (inset, Fig. 7.16a),

for field values of 0.1 and 20 kG. This observations are consistent with the susceptibility data

reported by Kaczorowski et al. (Kaczorowski 2000). However, the specific heat data (Fig.

7.16b) shows a sharp peak around 2.1 K, and the feature associated with this transition could

have been missed in the M / H measurements because of the limited temperature range below

the transition.

Trovarelli et al. (Trovarelli 2000) presented magnetization measurements that, for low ap-

plied fields (H = 0.1 kG), suggest antiferromagnetic ordering below TN = 3.4 K, a value

that is different from the possible transition temperature indicated by our measurements. In

trying to understand the possible cause of such differences, single crystal x-ray measurements
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were performed. They indicate that our flux-grown YbPtIn single crystals have a partial (i.e.,

∼ 94 %) occupancy for one of the two Pt sites in the unit cell, such that the stoichiometry

of these crystals is closest to YbPt0.98In. This is not entirely surprising, given the differ-

ent flux growth process (a low Pt-concentration used in the initial Yb0.4Pt0.1In0.5 solution).

Consequently the R = Yb compound is excluded from the following discussion. A more com-

plete analysis of the thermodynamic and transport properties of this material is the subject of

Chapter ??.
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7.3 Data analysis

The magnetic RPtIn compounds that we investigate here appear to order magnetically

below ∼ 70 K. As can be seen in Fig. 7.17, their ordering temperatures Tord (also given in

Table 7.1) scale fairly well with the de Gennes factor dG = (gJ − 1)2 J (J + 1), where gJ is

the Landé g-factor, and J is the total angular momentum of the R3+ ion Hund’s rule ground

state. Whereas this suggests that the RKKY interaction between the conduction electrons

and the local magnetic moments gives rise to the long-range magnetic order, slight departures

from linearity, similar to those seen for other rare earth-series (Myers, 1999b; Bud’ko, 1999;

Morosan, 2004), are due to the extremely simplified assumptions associated with the de Gennes

scaling. The scaling is apparently unaffected by the curious switching from ferromagnetic to

antiferromagnetic ordering across the RPtIn series, which appears to be correlated with a

change in the anisotropy, such that, in the low-T paramagnetic state, χc > χab for the

ferromagnetic compounds, and χab > χc for the antiferromagnetic ones. At first, this may

seem inconsistent with de Gennes scaling, which would indicate similar ordering mechanisms
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for all RPtIn compounds, R = Gd - Tm. As we shall see, we believe that, because of their

Fe2P-type hexagonal structure, with three R ions sitting at orthorhombic point symmetry

sites, strong CEF effects constrain the local magnetic moments in R = Tb - Tm to equivalent

non-collinear easy-axes. This results in (i) anisotropic paramagnetic magnetization, and (ii)

crystal field limited saturated paramagnetic CL-SPM states with magnetization values well

below the corresponding free ion saturated moments.

We have already modelled the effects of strong crystal electric fields on the Fe2P-type

crystal structure, for the case of the extremely planar R = Tb member of the RPtIn series

and the similar R = Tm member of the RAgGe series, using the three co-planar Ising-like

systems model (Morosan 2005): having three rare earths in orthorhombic point symmetry,

the hexagonal symmetry of the unit cell was achieved by constraining the local moments to

three equivalent co-planar directions, 600 away from each other. In allowing both the ”up”

and ”down” positions (i.e., Ising-like) for each of the three magnetic moments, the antiferro-

magnetic ground state was, in the simplest case, realized by a (↘↑↙) moment configuration

(Fig. 6.13a); upon increasing the applied magnetic field within the basal plane, a number of

metamagnetic states occurred, showing simple dependencies of the critical fields Hc and the
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locally saturated magnetizations Msat on the angle θ between the direction of the field and the

easy axis (see Fig.13 and related discussion by Morosan et al. (Morosan, 2005a)). When all

the moments are in their ”up” positions (↖↑↗), a crystal field limited saturated paramagnetic

CL-SPM state is reached (Fig. 6.13b); the expected magnetization value is

1/3 ∗ µsat(Tb3+) ∗ (1 + 2 ∗ cos 600) = 2/3 ∗ µsat(Tb3+) or 2/3 ∗ 9 µB = 6 µB,

consistent with the easy-axis measured data (full circles) shown in Fig. 6.4a.

We thus see that the aforementioned three co-planar Ising-like systems model explains how

the measured magnetization values can be much smaller than the theoretical saturated value

of 9 µB for the Tb3+ ions.

By contrast, the GdPtIn doesn’t exhibit such reduced values of the magnetization for high

applied fields (Fig. 7.3), given that the Gd3+ ions are in a symmetric 8S7/2 state, and thus the
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CEF effects are minimal: for H ‖ c (crosses), the magnetization rapidly increases, reaching

µsat(Gd3+) = 7 µB for H ≥ 10 kG. This is typical of a ferromagnetic magnetization for field

applied along the direction of the moments (easy axis). Furthermore, the H ⊥ c data (open

circles) represent classical hard axis data, and are consistent with axial ferromagnetic ordering

in this compound, as the saturated state is also reached, however at a slower rate (i.e., for

H ≥ 40 kG).

For the other neighboring TbPtIn compound, the DyPtIn magnetization resembles the

similar data for GdPtIn, even though the presence of CEF effects in the former system results

in reduced magnetization values at our maximum applied field: as can be seen in Fig. 7.7,

the H ‖ c magnetization (crosses) rapidly increases with field, as expected for a ferromagnet

with moments along c, but at H = 55 kG its value is only ∼ 0.7 of the theoretical saturated

moment of 10 µB. For field applied within the basal plane (open circles), only 0.5 of the

saturated moment is reached following a metamagnetic transition around 35 kG. Whereas

more metamagnetic transitions beyond our maximum field of 55 kG could account for the

small magnetization values in this compound, such a hypothesis does not address one more

peculiarity already apparent for the RPtIn series: even though the R = Gd and Dy compounds

are ferromagnetic, and the R = Tb one is antiferromagnetic, their ordering temperatures scale

well with the de Gennes factor, as we showed in Fig. 7.17. Furthermore, the R = Ho and Er

compounds also display ferromagnetic components of the ordered state magnetization, whereas

TmPtIn is antiferromagnetic, and yet the de Gennes scaling still holds for all heavy RPtIn

compounds (Fig. 7.17). The question arises whether a generalized hypothesis exists, which

could account for the magnetic ordering in all RPtIn systems (R = Gd - Tm), or whether

TbPtIn and TmPtIn should be regarded as exceptions from the ferromagnetic axial ordering

across the series. We will try to address this question in Chapter 6, after presenting a detailed

study of the metamagnetism observed in the two extremely planar compounds, for which the

three co-planar Ising-like systems model has been introduced (Morosan 2005).

In what follows we will present one plausible model for the magnetic ordering in the local

moment RPtIn compounds, a generalized version of the two-dimensional three Ising-like sys-
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tems model, which addresses the above points. We first proposed such a model for DyAgGe

(Morosan, 2004), an isostructural compound to RPtIn, for which a ferromagnetic component

of the magnetization was also apparent along the c-axis.

In the three co-planar Ising-like systems model in Chapter 6, we assume that the magnetic

moments are allowed to three orientations (along any three of the six equivalent six-fold sym-

metry axes within the basal plane), with two positions (”up” and ”down”) per orientation.

This results in a set of three two-fold degenerate easy-axes, 600 away from each other, the

degeneracy being a direct consequence of the requirement that the Ising-like systems be co-

planar: the ”up” position for a given easy-axis is indistinguishable from the ”down” position

for the equivalent direction 3 ∗ 600 = 1800 away.

If we release the restriction that the moments be co-planar, while still imposing that their

in-plane projections be 600 away from each other to preserve the hexagonal symmetry of

the crystals, this degeneracy is lifted, and the moments are not necessarily Ising-like systems

any more. The three-dimensional model described above can be directly derived from the

planar one, as follows: we consider that Fig. 6.13 represents the in-plane projection of the

magnetic moments’ configuration, to which non-zero axial components of the moments are

added. The possible resulting moment configurations can be obtained using any combination

of ”up” (thin solid arrows) or ”down” (thin dotted arrows) planar and axial components of

the magnetic moments, as shown in Fig. 7.18. Given the orthorhombic point symmetry of

the magnetic moments’ sites, this yields two possible co-planar orientations for each magnetic

moment, with the corresponding ”up” and ”down” positions for each. The thick solid arrows

in Fig. 7.18 represent the full magnetic moments, which are parallel to three non-planar,

equivalent directions (i.e., easy axes), inclined at an angle α from the c-axis. This configuration

corresponds to the crystal field limited saturated paramagnetic CL-SPM state, where all in-

plane and axial components of the magnetic moments are in their respective ”up” positions.

It is worth noting that, by analogy with the two-dimensional model, there are two sets

of easy axes: the [1 2 l ]-equivalent axes, where l is the c-axis Miller index, for which the

corresponding in-plane model exactly describes TbPtIn, or the [1 1 l ]-equivalent directions,
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arrows: full magnetic moments in the CL-SPM state.

with a two-dimensional analogous example being TmAgGe (also described in detail by Morosan

et al. (Morosan, 2005a)). In our present model and data analysis, we are assuming the first

scenario, in which the easy axes are the [1 2 l ]-equivalent directions, which project in the

ab-plane onto the [1 2 0] directions. Consequently we will refer to the (1 2 0) planes as the

”easy” planes and the [1 2 0] directions as ”easy” in-plane axes, whereas the (1 1 0) planes and

the [1 1 0]-axes will be called in this case ”hard” planes and ”hard” in-plane axes respectively.

When the [1 1 l ] directions are the easy axes, the same description is still valid, with the ”easy”

and ”hard” planes and in-plane directions interchanged from the previous case.
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We have thus introduced a model generalized from the three co-planar Ising-like systems

model, which takes into account the CEF effects on hexagonal compounds with orthorhombic

point symmetry of the rare earths. For each compound, the strength of the CEF effects

will be reflected by the value of the angle α between the easy-axes and the c-axis. At low

temperatures, another energy scale is introduced by the applied magnetic field, and the model

described above is only valid for fields much smaller than the CEF energy. In this limit, for

the highest applied fields, a CL-SPM state is reached, for which the anisotropic magnetization

values are smaller than the theoretical saturated moments µsat for the respective R ions.

For a fixed angle α, there are six possible easy-axes (or three pairs of co-planar easy axes),

each with the corresponding ”up” and ”down” positions. As in the case of the two-dimensional

model, multiples S of three moments may be required to characterize the moment configuration

for a given applied field. The orientation of the applied field will determine the magnetic

moments to align along the three easy axes closest to the direction of the field, whereas its

magnitude will determine the number of ”up” and ”down” moments along those three easy

axes.

The CL-SPM state is reached when all three magnetic moments are in their ”up” positions

along three adjacent easy axes closest to the field direction (or, equivalently, when all in-plane

and axial components of the magnetic moments are in their ”up” positions). This state is

illustrated in Fig. 7.18, for the magnetic field applied off the c-axis. (If H is parallel to the

c-axis, all six ”up” positions of the magnetic moments are equally probable, and only when

rotating the field away from c the three easy axes closest to the applied field direction are

uniquely determined).

Experimentally we can only measure the projection of the magnetic moments along the

field direction, with the resulting magnetization per magnetic moment given by

M = 1
3 [

−→
M1 +

−→
M2 +

−→
M3 ] ·

−→
H
H .

Moreover, we were able to measure the angular dependent magnetization for the magnetic

field applied within the horizontal ab-plane and the high-symmetry vertical planes (i.e., ”easy”

or ”hard” planes). Such data can be used to probe the validity of our model, by comparison with
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the theoretical calculation of the expected angular dependent ”easy” and ”hard” magnetization

values.

For a fixed angle α, and for field making an angle θ with the c-axis, the magnetization

values M e(θ) and Mh(θ) in the CL-SPM state are, as calculated in detail in Appendix ??:

M e
CL−SPM/µsat(R3+) = 2

3 ∗ sinα ∗ sin θ + cosα ∗ cos θ

and

Mh
CL−SPM/µsat(R3+) =

√
3

3 ∗ sinα ∗ sin θ + cos α ∗ cos θ,

where θ is the angle between the applied magnetic field and the c-axis, and the indexes ”e”

and ”h” denote, respectively, the ”easy”- and ”hard”-plane components of the magnetization.

As already mentioned, we assume the ”easy” and ”hard” axes to be the [1 2 0] and the [1

1 0] directions, respectively. In what follows, our analysis refers only to the CL-SPM state,

therefore the subscript denoting the respective state has been dropped for clarity.

From these calculations, the expected magnetization components (in units of µsat(R3+))

for field parallel or perpendicular to the c-axis are:

M([001]) = M e(θ = 00) = Mh(θ = 00) = cosα ≤ 1,

M([120]) = M e(θ = 900) = 2
3 sinα < 1

and

M([110]) = Mh(θ = 900) =
√

3
3 sinα < 1.

Moreover, local maxima for the Me and Mh curves are reached for θmax = arctan(2
3 tanα),

and arctan(
√

3
3 tanα) respectively, with the corresponding magnetization values equal to

√
cos2 α + (2

3)2 sin2 α =
√

1− 5
9 sin2 α < 1,

and
√

cos2 α + (
√

3
3 )2 sin2 α =

√
1− 6

9 sin2 α < 1.

As can be seen from the above calculations, one should expect the measured magnetization

values to be smaller than the theoretical saturated moment µsat(R3+), regardless of the direc-

tion of the applied field. The only exception is the axial magnetization M([001]) for α = 00

(moments parallel to the c-axis), when the expected value is exactly µsat(R3+). These ob-

servations lend support to the idea that the three-dimensional model considered above could

describe the RPtIn compounds, since for all R = Tb - Tm we have indeed observed reduced
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values of the high-field anisotropic magnetizations. On the other hand, it appears that the

fully saturated magnetization measured for GdPtIn could be described by the above model

for α = 00, but the absence of CEF effects restricts the applicability of our model to this

compound.

In the case of TbPtIn the magnetization measurements revealed extreme planar anisotropy

of this compound (Fig. 6.1 and 6.4a). Within our three-dimensional model, this is consistent

with the angle α being equal to 900, when the magnetic moments become co-planar. In this

case, the calculated magnetization values become (in units of µsat(Tb3+))

M([001]) = cos 900 = 0,

M([120]) = 2
3 sin 900 = 2

3

and

M([110]) =
√

3
3 sin 900 =

√
3

3 .

These values show that when α = 900, our model indeed reduces to the three co-planar

Ising-like systems model (Morosan 2005).

When 00 ≤ α < 900, our model yields axial magnetization values larger than 0, and

this is observed for all RPtIn, R = Tb - Tm. Therefore we can verify the applicability of our

model to these systems by estimating the angle α, and comparing the measured and calculated

magnetization values in the CL-SPM state as follows:

For all RPtIn compounds, the in-plane magnetization measurements were performed for

field along the [1 2 0] direction. Since it is not readily apparent whether this represents the

”easy” or ”hard” in-plane direction, one way to estimate the angle α is from the M([0 0 1])

data:

M([0 0 1]) / µsat(R3+) = cos α.

Therefore α = arccos(M([0 0 1]) /µsat(R3+)). These values are listed in Table 2, together

with the measured magnetization values M([0 0 1] at H = 55 kG, which were used in the

above formula. For this value of the angle α, the ”easy” and ”hard” in-plane magnetization

components should be, as described above,

M e / µsat(R3+) = 2
3 sinα
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and

Mh / µsat(R3+) =
√

3
3 sinα.

However, slight misalignments of the samples can occur for H ‖ c, which may result in

significant errors in our determination of angle α. In order to minimize these errors, another

way to determine α is from the ratio of the two anisotropic measured magnetizations:

M([1 2 0]) / M([0 0 1]) = 2/3 ∗ sinα / cosα if the [1 2 0] direction is the easy axis,

or M([1 2 0]) / M([0 0 1]) =
√

3/3 ∗ sinα / cosα if the [1 2 0] direction is the hard axis.

The measured M([1 2 0]) values which were used for these calculations are listed in Table 2.

Thus the angle α is either

arctan( 3 / 2 ∗ M([1 2 0]) / M([0 0 1])) or arctan( 3 /
√

3 ∗ M([1 2 0]) / M([0 0 1])),

and these estimated values are also listed in Table 2 as αe and αh.

As can be observed from the angle values listed in Table 2, together with the error bars

resulting from the two different calculations, the angle α ranges from 890 for TbPtIn, to ∼ 320

for ErPtIn. Our three-dimensional model seems to be consistent with the experimental data

for all RPtIn, R = Tb - Tm.

In order to further explore the validity of the above model, angular dependent magnetiza-

tion measurements were performed for a HoxY1−xPtIn system (x ≈ 0.04), for the applied

field continuously rotated within the (0 0 1) or the (1 2 0) plane. The above R = Ho system

was preferred because the M(H) curves in Fig. 7.10 are consistent with CL-SPM saturated

state at H = 55 kG for both H ‖ c and H ⊥ c, whereas the system with low concentration

of magnetic ions was chosen for this measurement in order to check the validity of our model

in the single-ion limit. Moreover, the anisotropic field dependent data for the diluted sample

(lines, Fig. 7.10) show almost horizontal plateaus for fields higher than ∼ 30 kG, with mag-

netization values close to the corresponding ones for the pure HoPtIn (symbols). The angle

α for HoxY1−xPtIn, calculated using M([0 0 1]) |55 kG = 7.41 µB/ Ho, is 42.10, close to the

corresponding value for the pure compound.

The magnetization measured for field applied within the basal plane (i.e., the (0 0 1)

plane) reveals the six-fold anisotropic data, with the ratio M([1 1 0]) / M([1 2 0]) close to
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Figure 7.19 Angular dependent magnetization for HoxY1−xPtIn (x
∼ 0.04) (full circles) at H = 55 kG and T = 2 K. The solid
lines represent the ”easy” and ”hard” plane calculated mag-
netizations as a function of θ (see text), for fixed angle α.

cos 300 ' 0.9, as expected based on the proposed model. The angular dependent magne-

tization at H = 55 kG is shown in Fig. 7.19 (full circles) for H ‖ (1 2 0). Also shown

as solid lines are the calculated M e(θ) and Mh(θ), for fixed α = 42.10 determined above.

As can be seen, the measured data qualitatively reproduces the features expected based on

the above model (i.e., two-fold symmetry with respect to both the c-axis and the ab-plane,

local minima corresponding to H ‖ [001] or θ = n ∗ 1800, n-integer, and maxima at some

intermediate angle). More detailed models which would characterize the RPtIn may exist,

and determining all of them is beyond the scope of this paper. However, if we restrict our

discussion to the three-dimensional model described before, we see that significant departures

from both calculated M e(θ) and Mh(θ) curves can still be observed, despite the apparent

qualitative agreement between calculations and measured data. This may mean that either a

totaly different model needs to be considered, or that the aforementioned model needs further

refinement in order to describe at least the HoPtIn, and perhaps the rest of the RPtIn com-
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pounds. Furthermore, additional experiments (i.e., neutron diffraction) are required to help

identify the most appropriate model for the magnetization of the RPtIn compounds.

7.4 Conclusions

Single crystals of the RPtIn compounds (R = Gd - Lu) have been grown using the self-

flux technique, and have been characterized by anisotropic temperature- and field-dependent

magnetization and zero-field specific heat measurements. A small Pt-deficiency in the YbPtIn

is apparent from single crystal X-ray data, whereas all the other heavy R members of the series

are believed to form stoichiometrically. Because of this difference in composition, we leave the

characterization of the YbPtIn system to a separate study, presented in Chapter ??.

The magnetic RPtIn compounds order magnetically above 2 K, with the ordering tem-

peratures (given in Table 7.1) scaling well with the deGennes dG factor (Fig. 7.17). This is

consistent with the coupling between the conduction electrons and the local magnetic moments

giving rise to the long-range magnetic order via RKKY exchange interaction. However, the

R = Tb and Tm members of the series have antiferromagnetic ground states, whereas in the

ordered state, the magnetization of all the other compounds has at least a ferromagnetic com-

ponent along the c-axis. These discontinuous changes from antiferromagnetic to ferromagnetic

state across the series seems to also be associated with a change of low-temperature anisotropy

of the paramagnetic state, such that χab > χc for TbPtIn and TmPtIn, and χab < χc for

the rest of the magnetic RPtIn.

The magnetization of the TbPtIn compound is extremely anisotropic, with the mag-

netic moments confined to the ab-plane. Below the antiferromagnetic ordering temperature

TN = 46.0 K, a second magnetic phase transition is apparent around 27 K. At low tempera-

ture, in-plane magnetization data reveals complex metamagnetism, and this has been studied

in detail, and described using the three co-planar Ising-like systems model by Morosan et al.

(Morosan, 2005a).

Having understood the complex angular dependent metamagnetism in the planar TbPtIn

compound, we attempted to generalize the three co-planar Ising-like systems model to three
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dimensions, such as to characterize the magnetically ordered state in the other RPtIn com-

pounds: instead of assuming the moments to be confined to equivalent co-planar directions, 600

away from each other, they could be restricted to equivalent directions within vertical planes

rotated by 600 around the c-axis. This is equivalent with sets of six non-planar easy axes, each

at an angle α from the c-axis, with ”up” and ”down” orientations for each directions. When

the applied field is oriented at a non-zero angle from the c-axis, the three magnetic moments

will align along the three easy axes closest to the direction of the field. (This implies that at

high enough fields, all three moments will be in the ”up” positions of three adjacent easy axes,

corresponding to the CL-SPM moment configuration.)

The angle α between the easy axes and the c direction is dependent, in each compound, on

the crystalline electric field CEF energy. Simple geometrical relations allow us to calculated

the expected components of the CL-SPM magnetization along the c-axis, as well as for the

”easy” and ”hard” in-plane orientations of the field. Assuming that for H = 55 kG (in most

cases the maximum available field for our measurements), the RPtIn systems indeed reach

the CL-SPM state at low temperatures, we can determine the fixed value for the angle α for

each compound, and compare the high-field measured magnetization values with the calculated

ones.

As can be seen from Table 7.2, all RPtIn (R = Tb - Tm) are well described by this model,

with α values between 890 for R = Tb, and ∼ 320 for R = Er. However, such a model

does not fully account for the angular dependence of the magnetization, at least in the case

of HoxY1−xPtIn: this is qualitatively reproduced by the model calculations, with considerable

differences between the measured and theoretical magnetization values for the whole angular

range. Whereas reasonable misorientation of the rotation sample cannot account for these

differences, we are led to believe that it is necessary to refine the over-simplified model described

here, and also that additional measurements may help clarify the magnetic structure in these

RPtIn compounds.
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7.5 Appendix

In a cartesian coordinate system as shown in Fig. 7.18, the three magnetization vectors in

the CL-SPM state can be written as
−→
M1 = µsat(R3+) (0, sinα, cosα),
−→
M2 = µsat(R3+) (sinα ∗ cos 300, sinα ∗ sin 300, cosα)

and
−→
M3 = µsat(R3+) (sinα ∗ cos 300,− sinα ∗ sin 300, cosα),

whereas, in general, the applied field vector can be written as
−→
H = (Hx, Hy, Hz).

Thus the general expression for the CL-SPM magnetization M becomes

M = 1
3 [(0 + sinα ∗ cos 300 + sinα ∗ cos 300) ∗ Hx

H +

(sinα + sinα ∗ sin 300 − sinα ∗ sin 300) ∗ Hy

H + (cosα + cosα + cosα) ∗ Hz
H ]

or

M =
√

3
3 sinα ∗ Hx

H + 1
3 sinα ∗ Hy

H + cos α ∗ Hz
H .

Experimentally, we are able to measure the angular dependence of the magnetization within

the ”easy” and ”hard” planes. If the magnetic field is continuously rotated within the ”easy”

plane ((2 1 0) in Fig. 7.18) than, in cartesian coordinates, the vector
−→
H becomes

−→
H = H (cos 300 ∗ sin θ, sin 300 ∗ sin θ, cos θ),

where θ is a continuous variable representing the angle between the applied field and the c-axis.

In this case, the angular dependent magnetization becomes

M e/µsat(R3+) =
√

3
3 sinα ∗

√
3

2 sin θ + 1
3 sinα ∗ 1

2 sin θ + cosα ∗ cos θ =

= 2
3 ∗ sinα ∗ sin θ + cosα ∗ cos θ,

where the index ”e” refers to the ”easy” plane component.

Similarly, if the magnetic field is rotated within the ”hard” (1 1 0) plane, the vector
−→
H can

be written as
−→
H = H (cos 600 ∗ sin θ, sin 600 ∗ sin θ, cos θ))

and the corresponding angular dependent magnetization is

Mh/µsat(R3+) =
√

3
3 sinα ∗ 1

2 sin θ + 1
3 sinα ∗

√
3

2 sin θ + cosα ∗ cos θ =
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=
√

3
3 ∗ sinα ∗ sin θ + cos α ∗ cos θ.

The index ”h” is used to indicate the ”hard” plane component of this magnetization.

Both calculated Me(θ) and Mh(θ) are shown in Fig. 7.19 (solid lines) for fixed α = 42.10,

as calculated for the HoxY1−xPtIn system (see text). As expected, the two-fold symmetry

with respect to the c-axis (θ = 2n ∗ 900, n-integer) and the ab-plane (θ = (2n + 1) ∗ 900,

n-integer) is revealed by both the calculated angular dependent magnetizations.
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CHAPTER 8. Field induced Quantum Critical Point in YbAgGe

8.1 Magnetic field induced non-Fermi-liquid behavior in YbAgGe single

crystals∗

8.1.1 Introduction

YbAgGe is the penultimate member of the hexagonal RAgGe series (Morosan, 2004) and

was recently identified (Morosan, 2004; Beyermann, 1998; Canfield, 2003; Katoh, 2004) as a

new Yb-based heavy fermion compound. Magnetization measurements on YbAgGe down to

1.8 K (Morosan 2004) show moderate anisotropy (at low temperatures χab/χc ≈ 3) and a loss

of local moment character below ∼ 20 K (Fig.8.1) (also see Fig. 33 and related discussion in

Morosan 2004). The in-plane M(H) at T = 2 K shows a trend toward saturation whereas

H ‖ c field-dependent magnetization continues to be virtually linear below 140 kG (Fig. 8.1,

inset). Initial thermodynamic and transport measurements down to 0.4 K (Beyermann, 1998;

Canfield, 2003; Morosan, 2004) reveal two magnetic transitions, a higher one at ≈ 1 K, and

a lower one, with very sharp features in ρ(T ) and Cp(T ), at ≈ 0.65 K (Fig. 5.30). Given

that the magnetic entropy inferred from the Fig. 5.30 is only ∼ 5% of R ln 2 at 1 K and

only reaches R ln 2 by ∼25 K it seems likely that these transitions are associated with a small

moment ordering. Based on these measurements the compound was anticipated to be close to

the quantum critical point. The linear component of Cp(T ), γ, is ∼150 mJ/mol K2 between

12 K and 20 K. Cp(T )/T rises up to ∼1200 mJ/mol K2 for T ∼ 1 K but given the presence

of the magnetic transitions below 1 K, it is difficult to unambiguously evaluate the electronic

specific heat. Grossly speaking, 150 mJ/mol K2 < γ < 1 J/mol K2 leading to an estimate 10
∗after ”Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals”, S. L. Bud’ko, E.

Morosan and P. C. Canfield, Phys. Rev. B 69 014415 (2005).
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K < TK < 100 K for the Kondo temperature, TK .
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Figure 8.1 Anisotropic temperature-dependent DC susceptibility and (in-
set) field-dependent magnetization of YbAgGe.

Since the number of the Yb-based heavy fermion compounds is relatively small (Stewart,

1984; Fisk, 1992; Hewson, 1997) any new member of the family attracts attention (Fisk, 1992;

Thompson, 1994). As an up to date example, YbRh2Si2, a heavy fermion antiferromagnet

(Trovarelli, 2000), became a subject of intensive, rewarding exploration (Gegenwart, 2002;

Ishida, 2002; Custers, 2003). The case of YbAgGe appears to have the potential of being

somewhat similar to YbRh2Si2: the relatively high value of γ and the proximity of the magnetic

ordering temperature to T = 0 suggest that YbAgGe is close to a quantum critical point (QCP)

and make it a good candidate for a study of the delicate balance and competition between

magnetically ordered and strongly correlated ground states under the influence of a number of

parameters such as pressure, chemical substitution and/or magnetic field.
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In this work we report the magnetic-field-induced evolution of the ground state of YbAgGe

as seen in anisotropic resistivity and specific heat measurements up to 140 kG. We show that

on increase of the applied magnetic field the progression from small moment magnetic order

to QCP with the evidence of non-Fermi-liquid (NFL) behavior and, in higher fields, to low

temperature Fermi-liquid (FL) state is observed.

8.1.2 Results

8.1.2.1 H ‖ (ab)

The low temperature part of the temperature dependent resistivity measured in various

constant magnetic fields applied in the (ab) plane is shown in Fig. 8.2(a). There are several

features that apparently require detailed examination. Multiple transitions in zero field is

a feature that is common throughout the RAgGe series (Morosan, 2004) and in the case of

YbAgGe in zero field in addition to the sharp transition at approximately 0.64 K another,

albeit less pronounced feature is apparent at ∼ 1 K. Whereas the 0.64 K transition seems to

be pushed below the base temperature of our measurements by a 20 kG field, the other feature

shifts down in temperature more gradually and is seen up to 40 kG. For applied field between

60 and 90 kG (Fig. 8.2(c)) low temperature ρ(T ) functional dependence is linear down to our

base temperature, with the upward curvature in ρ(T ) starting to occur below ∼ 0.8 K in 100

kG field. In higher applied fields (H ≥ 100kG) (Fig. 8.2(d)) low temperature resistivity follows

ρ(T ) = ρ0 + AT 2 (Fermi-liquid-like) functional behavior with the range of its occurrence (for

each curve the upper limit is marked with arrow in Fig. 8.2(d)) increasing with the increase

of applied field and the coefficient A decreasing.

Field dependent resistivity data taken at constant temperatures between 0.4 K and 5.0

K are shown in Fig. 8.3(a). At T = 0.4 K two fairly sharp features, at ∼ 13 kG and ∼
40 kG are seen in the ρ(H) data. The lower field feature may be identified as a signature

of a metamagnetic transition between two different magnetically ordered phases. This feature

vanishes as the temperature increased to T > 0.65 K (Fig. 8.3(b)). The second, more smoothed,

higher field feature, may be to a transition from a magnetically ordered state to a saturated
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Figure 8.2 (a)Low temperature part of ρ(T ) curves for YbAgGe taken at
different applied fields H ‖ (ab); (b)ρ(T ) for H = 0, 20, 40
and 60 kG below 2 K (curves are shifted along y axis by 15,
5, -2.5 and 0 µΩ cm respectively for clarity), arrows indicate
possible magnetic ordering transitions; (c)ρ(T ) for H = 60, 80,
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eye emphasizing regions of linear ρ(T ); (d)resistivity at H =
90, 100, 110, 120, 130 and 140 kG below ∼ 3 K as a func-
tion of T 2, dashed lines bring attention to the regions where
ρ(T ) = ρ0 + AT 2, arrows indicate temperatures at which devi-
ations from T 2 behavior occur.
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paramagnetic state. If the critical field for this transition is inferred from the maximum in

ρ(H), this transition can be discerned up to 0.8-0.9 K (Fig. 8.3(b)), consistent with it being

associated with the ∼ 1 K transition seen in the H = 0 ρ(T ) and Cp(T ) data (Fig. 5.30).

At higher temperatures (Fig. 8.3(a)) this feature broadens and resembles a crossover rather

than a transition. For 2 K < T < 5 K ρ(H) looks like a generic magnetoresistance of a

paramagnetic metal (Yosida, 1957). The large black dots in Fig. 8.3(b) show the evolution of

the two aforementioned features.

The low temperature heat capacity of YbAgGe is shown for several values of applied mag-

netic field in Fig. 8.4(a). The lower temperature, sharp peak is seen only for H = 0, having

been suppressed below the base temperature by an applied field of 20 kG. The higher temper-

ature maximum seen just below 1 K (for H = 0) shifts down with the increase of the applied

field and drops below 0.4 K for H ≥ 60kG. The field dependence of this feature is consistent

with that of the higher temperature feature in resistivity discussed above giving further evi-

dence that YbAgGe has two closely-spaced magnetic transitions. The same data plotted as

Cp/T textitvs T 2 (Fig. 8.4(b)) allow for the tracking of the variation of the electronic specific

heat coefficient γ in applied field (for H ≥ 60 kG, when the magnetic order is suppressed). The

values at T 2 = 0.35 K2 (a value chosen to avoid the upturn in lowest temperature, highest field

Cp/T (T 2) data possibly associated with the nuclear Schottky contribution) give a reasonable

approximation of γ(H). A more than four-fold decrease of γ is observed from 60 kG to 140

kG.

The magnetic contribution to the YbAgGe specific specific heat (defined as Cmagn =

Cp(Y bAgGe) − Cp(LuAgGe)) is shown in Fig. 8.4(c) in Cmagn/T textitvs lg T coordinates.

(It should be noted that Cp(T ) of LuAgGe was measured at H = 0 and 140 kG and found

to be insensitive to the applied field in this temperature range.) For intermediate values of

applied field there is a region of the logarithmic divergency seen in the specific heat data

Cmagn/T ∝ − lnT . The largest range of the logarithmic behavior (more than an order of mag-

nitude in temperature, from below 1 K to above 10 K) is observed for H = 80 kG. These data

can be described as Cmagn/T = γ′0 ln(T0/T ) with γ′0 ≈ 144 mJ/mol K2 and T0 ≈ 41 K. These
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parameters are of the same order of magnitude as those reported for YbRh2Si2 (Trovarelli,

2000). In higher fields Fermi-liquid-like behavior apparently recovers, in agreement with the

resistivity data.

The crossover function (C(H)−C(H = 0))/T vs H/T β (β = 1.15) (one of the expressions

considered in the scaling analysis at a QCP) is shown in the inset to Fig. 8.4(c). Data for

H ≥ 60 kG collapse onto one universal curve. Such scaling behavior (Tsvelik ,1993) with β

between 1.05 and 1.6 was observed for a number of materials that demonstrate NFL properties

(Trovarelli, 2000; Andraka, 1991; Lenkewitz, 1997; Heuser, 1998; KGrner, 2000) and may be

considered as further corroboration of the proximity of YbAgGe to a QCP.

8.1.2.2 H ‖ c

YbAgGe manifests an easy plane anisotropy in both its low-field and high-field magnetiza-

tion (Fig. 8.1). This is a trend that evolves across the RAgGe series (Morosan 2004), textite.g.

in TmAgGe the local moments are extremely anisotropic being confined to the basal plane.

Not surprisingly this anisotropy manifests itself in the low-temperature ρ(H,T ) and Cp(H, T )

data. The variation of the temperature dependent resistivity for H ‖ c (Fig. 8.5(a)) is com-

parable to that for H ‖ (ab). As for the in-plane orientation of the field, the two transitions

seen for H = 0 move to lower temperatures with application of magnetic field, albeit the effect

of field is weaker, so that the lower temperature transition is still being detected as a break

in slope for H = 20 kG whereas the higher temperature transition persists up to 80 kG (Fig.

8.5(b)). The field range for which linear, low temperature resistivity can be seen is smaller and

is shifted to higher fields (Fig. 8.5(c)), whereas the ρ− ρ0 ∝ T behavior can be recognized for

H = 100 kG and 120 kG, and a slight upward curvature above 0.4 K is already seen at H =

130 kG. The low temperature resistivity can be characterized by ρ(T ) = ρ0+AT 2 (Fig. 8.5(d))

and this curvature can be viewed as a signature of a FL behavior. The range of T 2 behavior

increases and the value of A decreases with an increase of applied field. The field-dependent

resistivity for this orientation of the magnetic field (Fig. 8.6(a)) is similar to the set of ρ(H)

isotherms for H ‖ (ab) except for the weaker field dependence of the observed transitions (Fig.
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8.6(b)).

The low temperature part of the heat capacity measured for H ‖ c up to 140 kG is shown

in Fig. 8.7(a). Upper magnetic ordering transition temperature decreases with increase of

applied field and can be followed up to 60 kG. Electronic contribution to the specific heat for

fields where the ordering transition is suppressed can be estimated from the Fig. 8.7(b). For

this orientation the largest range of the logarithmic behavior Cmagn/T ∝ − ln T is observed

for H = 140 kG (Fig. 8.7(c)) and these data can be expressed as Cmagn/T = γ′0 ln(T0/T )

with γ′0 ≈ 143 mJ/mol K2 and T0 ≈ 44 K, the values of γ′0 and T0 being, within the accuracy

of the data and the fit, the same as for H ‖ (ab). Scaling behavior of the specific heat data

plotted as (C(H) − C(H = 0))/T vs. H/T β (the value of the exponent β = 1.15 is the same

as for H ‖ (ab)) is observed for H ≥ 100 kG (Fig. 8.7(c), inset).

8.1.3 Summary and Discussion

For both sets of data (H ‖ (ab) and H ‖ c), at high enough applied fields, long range mag-

netic order is suppressed, and the electronic contribution to the specific heat can be estimated,

whereas the low temperature resistivity shows ∆ρ ∝ AT 2 FL-like behavior. The values of γ

were estimated at T 2 = 0.35 K2 (T ≈ 0.6 K) and decrease with the increasing magnetic field

(Fig. 8.8(a)) in a manner similar to what was observed in YbRh2Si2 (Gegenwart, 2002) and

other materials. Although the data set is sparse, it is worth noting that an approximately

50-55 kG shift down of the data for H ‖ c (Fig. 8.8(a)) brings it into rough agreement with

the H ‖ (ab) data and so that the two sets form a universal curve. The T 2 coefficient of

FL-like resistivity, A, also decreases with an increase of applied field (Fig. 8.8(b)). The shift

required to have the A data for the two H orientations on the same curve is 30-25 kG. The

field dependence of the Kadowaki-Woods ratio, A/γ2 (Kadowaki, 1986) is presented in Fig.

8.8(c). Many of the γ and A values were reckoned for the same magnetic field. In some

cases when additional values of A were available a straightforward interpolation of γ(T ) was

used. Although more data points may be required to clarify these trends, several features are

seen in the Fig. 8.8: the obtained values of A/γ2 are of the same order of magnitude, but



193

0 2 4 6 8 10

60

80

100 (a)

 

 

YbAgGe H||c

 (
 c

m
)

T (K)

 H=0
 20 kOe
 40 kOe
 60 kOe
 80 kOe
 100 kOe
 120 kOe
 130 kOe
 140 kOe

0.0 0.5 1.0 1.5 2.0

 H=0
 20 kOe
 40 kOe
 60 kOe
 80 kOe

(b)

YbAgGe H||c

 

 

 (
 c

m
)

T (K)

0 1 2 3 4

60

70

80

90

(c)

 
 

YbAgGe H||c

 (
 c

m
)

T (K)

 80 kOe
 100 kOe
 120 kOe
 130 kOe

0 1 2 3 4

60

65

70

75 (d) YbAgGe H||c

 

 

 (
 c

m
)

T2 (K2)

 120 kOe
 130 kOe
 140 kOe

Figure 8.5 (a)Low temperature part of ρ(T ) curves for YbAgGe taken at
different applied fields H ‖ c; (b)ρ(T ) for H = 0, 20, 40, 60 and
80 kG below 2 K (curves are shifted along y axis by 22, 10, 2.5,
-5 and -12.5 µΩ cm respectively for clarity), arrows indicate
magnetic ordering transitions; (c)ρ(T ) for H = 80, 100, 120
and 130 kG below 4 K, dashed lines are guides for the eye
emphasizing regions of linear ρ(T ); (d)resistivity at H = 120,
130 and 140 kG below ∼ 3 K as a function of T 2, dashed lines
bring attention to the regions where ρ(T ) = ρ0 + AT 2, arrows
indicate temperatures at which deviations from T 2 behavior
occur.



194

0 20 40 60 80 100 120 140

60

70

80

90
1 2 3 4 5 6 7 8

9 10 11
12 13 14 15 16 17 18 19

20
21 22

23 24
25

26 27 28
29

30
31 32

33
34

35
36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

A
B C D

E F G H I
J K L

M N
O P Q R

S T U
V

W X
Y

Z AA
AB

AC
AD AE

AF
AG

AH
AI

AJ

AK

AL

AM

AN
AO

AP
AQ

AR

AS

AT

AU

AV

AW

AX

AY

AZ
BA

BB

BC

BD

a
b c d

e f g
h i j k l m

n o
p

q r
s t

u v w x
y z aa

ab
ac

ad
ae

af
ag

ah
ai

aj

ak
al

am

an
ao

ap
aq

ar

as
at

au

av

aw

ax

ay

az

ba

bb

bc

bd

be

5 K

0.4 K

(a)

YbAgGe H||c

 

 

 (
 c

m
)

H (kOe)

0 20 40 60 80 100

70

75

80

85
1.0 K

0.4 K

(b)

YbAgGe H||c

 

 

 (
 c

m
)

H (kOe)

Figure 8.6 (a)ρ(H) (H ‖ c) isotherms for YbAgGe taken every 0.05 K
between 0.4 K and 0.7 K, every 0.1 K between 0.8 K and 1.2
K, every 0.2 K between 1.4 K and 2.0 K and at 2.3 K, 2.5
K and 5.0 K, arrows point to the transitions discussed in the
text; (b)enlarged low field - low temperature (0-100 kG, 0.4-1.0
K) part of the panel (a), black dots mark transitions on the
respective curves.



195

0 1 2 3 4 5
0

500

1000

1500
(a) YbAgGe H||c

 

 

C
p (

m
J/

m
ol

 K
)

T (K)

 H=0
 20kOe
 40kOe
 60kOe
 80kOe
 100kOe
 120kOe
 140kOe

0 2 4 6 8 10
0

500

1000

1500

(b)YbAgGe H||c

 

 

C
p/T

 (m
J/

m
ol

 K
2 )

T2 (K2)

 H=0
 20kOe
 40kOe
 60kOe
 80kOe
 100kOe
 120kOe
 140kOe

1 10
0

200

400

600

800

1000

1200

1400

1600

1800

1 10 100

-0.8

-0.6

-0.4

-0.2

0.0

(c)YbAgGe H||c

 

 

C
m

ag
n/T

 (m
J/

m
ol

 K
2 )

T (K)

 H=0
 20kOe
 40kOe
 60kOe
 80kOe
 100kOe
 120kOe
 140kOe

 

(C
(H

)-
C

(0
))

/T
 (J

/m
ol

 K
2 )

 

H/T1.15 (kOe/K1.15)

Figure 8.7 (a)Low temperature part of the heat capacity curves for
YbAgGe taken at different applied fields H ‖ c, arrows indicate
peaks associated with magnetic ordering; (b)low temperature
part of Cp vs T 2 curves; (c)semi-log plot of the magnetic part
(Cmagn = Cp(Y bAgGe) − Cp(LuAgGe)) of the heat capacity,
Cmagn/T vs T , for different applied magnetic fields, dashed line
is a guide to the eye, it delineates linear region of the H =
140 kG curve; inset: semi-log plot of (C(H)−C(H = 0))/T vs
H/T 1.15 (T ≥ 0.8 K), note approximate scaling of the data for
H ≥ 100 kG.



196

several times higher than ∼ 1×10−5 µΩ cm/(mJ/mol K)2 obtained in (Kadowaki, 1986) and

corroborated by the larger set of data in (Continentino, 1994; Tsujii 2003); for H ‖ (ab) the

Kadowaki-Woods ratio decreases with an increase of the field (not enough data is available for

H ‖ c). Though magnetotransport measurements down to lower temperatures will allow for

the estimate of A in a wider temperature range and may refine our A/γ2 data, both of the

features seen in Fig. 8.8(c) were observed in YbRh2Si2 (Custers, 2003) and apparently are

common for materials where NFL behavior can be induced by magnetic field. In addition, a

larger value of the Kadowaki-Woods ratio is anticipated theoretically in the close vicinity of

a magnetic instability (Takimoto, 1996), in agreement with our experimental data, whereas

constant (i.e. field-independent in our case) Kadowaki-Woods ratio is expected only in the

local critical regime (Continentino, 2001).

Finally, based on the thermodynamic and transport data down to ∼ 0.4 K and up to

140 kG, we can construct tentative T − H phase diagrams for the two orientations of the

applied magnetic field (Fig. 8.9). Both phase diagrams are very similar. Initially increasing

magnetic field drives first the lower and then the higher magnetic transitions to zero. With

further increase in field signatures of the NFL behavior appear in the temperature dependent

resistivity (∆ρ ∝ T ) and heat capacity (Cmagn/T ∝ − ln T ) and at our highest applied field

values FL-like low temperature resistivity (∆ρ ∝ T 2) (i.e. the coherence line (Continentino,

2001; Continentino, 1989) on the T −H phase diagram) is observed. Although the current lack

of data below ∼ 0.4 K impairs our ability to fully delineate the critical field that corresponds

to T = 0 QCP, a rather crude assessment of the data (Fig. 8.9) suggests Hab
c ≈ 45-70 kG,

Hc
c ≈ 80-110 kG.

8.1.4 Conclusions

We presented results that allow for the classification of YbAgGe as a new heavy fermion

material with magnetic field induced NFL behavior (critical fields are Hab
c ≈ 45-70 kG, Hc

c ≈
80-110 kG). Although its critical fields are somewhat higher than found for the extensively

studied YbRh2Si2, they are still within the range accessible by many groups. It should be
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mentioned that only very few stoichiometric compounds are known to demonstrate this type

of behavior, making YbAgGe an important and interesting addition to the family of strongly

correlated materials. Results of this work can serve as a road map for further studies, delin-

eating further experimental courses: macroscopic (magnetization) and microscopic (neutron

diffraction, µSR, Moessbauer spectroscopy) measurements at low temperatures and in applied

field are desirable to clarify the nature of the magnetically ordered states in YbAgGe and their

evolution in field; lower temperature (T < 0.4 K), detailed thermodynamic and transport mea-

surements in the vicinity of the field-induced QCP would be very helpful for the understanding

of the physics of field induced NFL behavior and as a point of comparison with a number of

existing theories (Stewart, 2001; Coleman, 2001; Pogorelov, 2003; Continentino, 2003) and

with other materials with similar behavior. In addition, as is often the case for materials close

to QCP, pressure and doping study may have a great potential in fine tuning of the ground

state properties of YbAgGe.

8.2 Anisotropic Hall effect in single-crystal heavy fermion YbAgGe∗

8.2.1 Introduction

Based on low temperature resistivity and heat capacity measurements in applied magnetic

fields YbAgGe was recently classified as a new heavy fermion material with long range, possibly

small moment, magnetic order below 1 K (Morosan, 2004; Budko, 2004; Katoh, 2004; Umeo,

2004) that shows magnetic field induced non-Fermi-liquid (NFL) behavior (Budko, 2004). The

critical field required to drive YbAgGe to the field-induced quantum critical point (QCP) is

anisotropic (Hab
c ≈ 45 kG, Hc

c ≈ 80 kG) and conveniently accessible by many experimental

groups (Budko, 2004). YbAgGe is one of the rarae aves of intermetallics (apparently only sec-

ond, after the extensively studied YbRh2Si2 [Trovarelli, 2000; Gegenwart, 2002; Ishida, 2002;

Custers, 2003]) a stoichiometric, Yb - based, heavy fermion (HF) that shows magnetic field

induced NFL behavior and as such is suitable to serve as a testing ground for experimental
∗after ”Anisotropic Hall effect in single-crystal heavy fermion YbAgGe”, S. L. Bud’ko, E. Morosan and P.

C. Canfield, Phys. Rev. B 71 054408 (2005).
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and theoretical constructions relevant for QCP physics. Among the surfeit of detailed descrip-

tions developed for a material near the antiferromagnetic QCP we will refer to the outcomes

(Coleman 2001) of two more general, competing, pictures: in one viewpoint the QCP is a spin

density wave (SDW) instability (Overhauser, 1959) of the Fermi surface; within the second

picture that originates in the description of heavy fermions as a Kondo lattice of local mo-

ments (Doniach, 1977a; Doniach, 1977b), heavy electrons are composite bound states formed

between local moments and conduction electrons and the QCP is associated with the break-

down of this composite nature. It was suggested (Coleman 2001) that Hall effect measurements

can help distinguish which of these two mechanisms may be relevant for a particular material

near a QCP. In the SDW scenario the Hall coefficient is expected to vary continuously through

the quantum phase transition, whereas in the composite HF scenario the Hall coefficient is

anticipated to change discontinuously at the QCP. Perhaps more importantly, in both scenar-

ios a clear and sharp change in the field dependent Hall effect (for the field-induced QCP) is

anticipated to occur at low temperatures, near the critical field value.

Although Hall effect measurements appear to be a very attractive method of gaining insight

into the nature of the QCP, one has to keep in mind that an understanding of the different

contributions to the measured Hall coefficient, in particular in magnetic or strongly correlated

materials, is almost inevitably difficult and potentially evasive (Hurd, 1972; Paschen, 2003).

Therefore measurements on samples well characterized by other techniques (Morosan, 2004;

Budko, 2004) as well as comparison with non-magnetic as well as non-HF members of the same

series can be beneficial. In this work we present temperature- and field- dependent Hall effect

measurements on YbAgGe single crystals. The non-magnetic member of the same RAgGe (R

= rare earth) series, LuAgGe, and the magnetic, essentially non-hybridizing, TmAgGe were

used for ”common sense” checks, or calipers, of the YbAgGe measurements.
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8.2.2 Results and Discussion

8.2.2.1 LuAgGe and TmAgGe

The field-dependent Hall resistivity for LuAgGe for H‖ab is shown in the upper inset

to Fig. 8.10(a) for several temperatures. ρH is only slightly non-linear in field over the

whole temperature range. This minor non-linearity causes some difference in the ρH/H vs.

T data obtained in different applied fields (Fig. 8.10(a)). The Hall coefficient, RH = ρH/H,

is measured to be negative. The overall temperature dependence is monotonic, slow and

featureless with approximately a factor of two increase in the absolute value of ρH/H from

room temperature to low temperatures. This temperature-dependency of the Hall coefficient of

the non-magnetic material possibly reflects some details of its electronic structure (for example,

comparable factor of 2 changes in RH were recently observed in LaTIn5, T = Rh, Ir, Co,

[Hundley, 2004]).
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Figure 8.10 (a) Temperature-dependent Hall coefficient, ρH/H, of LuAgGe
measured in different applied fields (H‖ab). Upper inset:
field-dependent Hall resistivity of LuAgGe measured at dif-
ferent temperatures. Lower inset: the sample, current and
applied field geometry used during the measurements. (b)
Similar data for TmAgGe.

Overall the temperature- and field-dependence of the Hall coefficient for TmAgGe (Fig.
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8.10(b)) is similar to that of LuAgGe with two main differences: (i)the long range order

and metamagnetism of TmAgGe (Morosan 2004) is reflected in Hall measurements as a low

temperature decrease in RH(T ) and as anomalies in ρH(H) for T = 2 K that are consistent

with the fields of the metamagnetic transitions; (ii)the absolute values of the R(H) data for

TmAgGe are a factor of 3-4 smaller than for LuAgGe.

8.2.2.2 YbAgGe, H‖ab

The temperature dependent Hall coefficient and the DC susceptibility data for YbAgGe

with the same orientation of the magnetic field with respect to the crystallographic axis are

shown in Fig. 8.11. The susceptibility, M/H, is field-independent above 50 K (i.e. M(H) is

linear below 140 kG in this temperature range) and is similar to the data reported in (Morosan,

2004; Budko, 2004). The Hall coefficient, RH , is field-independent above approximately 25 K.

The temperature dependencies of the susceptibility and the Hall coefficient at high temper-

atures closely resemble each other. At low temperatures a field-dependent maximum in RH

(see inset to Fig. 8.11) is observed. Qualitatively the temperature dependence of the Hall

coefficient is consistent with the picture presented in (Coleman, 1985; Hadzic-Leroux, 1986;

Fert, 1987; Lapierre, 1987) (see also (Hurd 1972; Chien 1980) for a comprehensive review).

Within this picture the temperature dependence of the Hall coefficient in heavy fermion ma-

terials is a result of two contributions: a residual Hall coefficient, Rres
H = ρres

H /H, and a Hall

coefficient due to the intrinsic skew scattering, Rs
H = ρs

H/H. The residual Hall coefficient is

ascribed to a combination of the ordinary Hall effect and residual skew scattering by defects

and impurities and, to the first approximation, is considered to be temperature-independent,

although, realistically, both the ordinary Hall effect and the residual skew scattering may have

weak temperature dependence.

The temperature-dependent, intrinsic skew scattering contribution (Rs
H) at high tempera-

tures (T À TK , where TK is the Kondo temperature) increases as the temperature is lowered

in a manner that is mainly due to the increasing magnetic susceptibility. At lower tempera-

tures Rs
H passes through a crossover regime, then has a peak at a temperature on the order
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Figure 8.11 Upper panel: temperature-dependent Hall coefficient, ρH/H,
of YbAgGe measured in different applied fields (H‖ab). Inset:
enlarged, low temperature part of the data. Lower panel: DC
susceptibility of YbAgGe (H along [120] direction). The ”low
H” label in the legend refers to the low field Hall resistivity
(see Experimental section) and for susceptibility measured in
H = 1 kG.

of the coherence temperature, Tcoh, and finally, on further cooling rapidly decreases (in the

coherent regime of skew scattering by fluctuations) to zero (i.e. RH ultimately levels off to

the ∼ Rres
H value at very low temperatures (Hadzic-Leroux, 1986; Fert, 1987; Lapierre, 1987).

In the high temperature (T À TK) limit we can (very roughly, within an order of magnitude)

separate these two contributions to the observed temperature-dependent Hall coefficient us-

ing a phenomenological expression RH(T ) = Rres
H + Rs × χ(T ) (O’Handley, 1980) with the

temperature-dependent skew scattering contribution written as Rs
H(T ) = Rs × χ(T ) where

χ(T ) = C/(T − Θ), C is the Curie constant, and Θ is the Weiss temperature. Using Θab =
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-15.1 K from (Morosan 2004) we can plot RH(T )× (T −Θ) vs. (T −Θ) (Fig. 8.12) and from

the linear part of the curve we can estimate Rres
H ≈ 0.02 nΩ cm/Oe and Rs ≈ -0.17 nΩ cm/Oe.

0 50 100 150 200 250 300 350

0

1

2

3

4

5

6

YbAgGe

 

 
(

H
/H

)*
(T

-
) (

[n
 c

m
/O

e]
 K

)

(T- ) (K)

Figure 8.12 Temperature-dependent low field Hall coefficient (H‖ab) plot-
ted as (ρH/H)× (T −Θ) vs. (T −Θ).

It seems peculiar that our estimate of Rres
H for YbAgGe differs noticeably from the Hall

coefficient measurements for LuAgGe and TmAgGe (see Fig. 8.10). Regarding this discrepancy

it should be mentioned that besides possible experimental (mainly geometrical) errors these

three materials may have different residual skew scattering and, additionally, as indicated by

the preliminary results of band structure calculations (Samolyuk, 2004), the density of states

at the Fermi level can be considerably different for all three compounds under consideration.

Although the magnetic susceptibility, χ(T ) of TmAgGe above the Néel temperature has a clear

Curie - Weiss behavior (Morosan 2004), in contrast to the case of YbAgGe, the temperature

dependence of the Hall coefficient for TmAgGe (Fig. 8.10(b)) does not have a similar functional
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form. The reason for this difference is apparently the very small skew scattering contribution

(Rs ¿ Rres
H ) to the Hall coefficient in TmAgGe. Similarly small couplings of local moment

magnetism with the Hall effect has been seen in other rare earth intermetallics, e.g. RNi2B2C

(R = rare earth) borocarbides (Fisher, 1995; Mandal, 1997; Narozhnyi, 1999).

In order to further explore the low temperature behavior of the Hall coefficient, measure-

ments down to 0.4 K were performed. The results (on a semi -log scale) are shown in Fig.

8.13. The data taken in applied fields of 75 kG and higher show the expected levelling off of

the RH(T ) as T → 0. It is noteworthy that the measured value of RH(T → 0) is close to the

aforementioned estimate of the residual Hall coefficient. This agreement suggests that at the

lowest temperatures the Hall coefficient is dominated by Rres
H and, barring the residual skew

scattering contribution, can probe the concentration of the electronic carriers.

Whereas the higher field values of the Hall coefficient vary smoothly with temperature (Fig.

8.13), the low field data, below T ≈ 3 K, show large variations. Although the signal to noise

ratio in the low field measurements is inherently lower, these variations appear to be above the

noise level (Fig. 8.13, inset) and the peaks slightly above 0.6 K and 1.0 K are understood as the

signatures of the magnetic transitions in YbAgGe (Morosan, 2004; Budko, 2004; Umeo, 2004)

that are suppressed (in this orientation) when a 75 kG, or higher, magnetic field is applied.

To further study the field-induced QCP in YbAgGe, field dependent Hall resistance mea-

surements were performed at different temperatures (Fig. 8.14). Although the theoretical

constructions are usually formulated in terms of the Hall coefficient, not Hall resistivity, in the

case of YbAgGe the magnetic field itself is a control parameter for the QCP that makes the

proper definition of the Hall coefficient ambiguous. We will continue presenting our data as

Hall resistivity, since it is a quantity unambiguously extracted from the measurements, and

leave the discussion on the suitable definition of the Hall coefficient for the Appendix.

For temperatures at and above ∼10 K, the ρH(H) behavior is monotonic and, at higher

temperatures, eventually linear (Fig. 8.14(b)). This type of behavior has been observed in a

number of different materials in the paramagnetic state (Hurd, 1972). The low temperature

evolution of the ρH(H) behavior is more curious (Fig. 8.14(a)) and ought to be compared
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Figure 8.13 Temperature-dependent Hall coefficient of YbAgGe (H‖ab)
measured in different applied fields down to 0.4 K. Open sym-
bols - He-4 measurements (2-300 K), filled symbols - mea-
surements using He-3 option (0.4-10 K). Inset: enlarged low
temperature part of the low field data with the estimated error
bars.

with the phase diagram obtained for YbAgGe (H‖ab) in (Budko, 2004) (an augmented version

of which is shown in Fig. 8.9 below). The lines in Fig. 8.14(a) roughly connect the points

according to the phase lines in (Budko, 2004) (see also Fig. 8.9 below). It can be seen that

the lower H − T magnetically ordered phase line possibly has (despite the scattering of the

points) correspondent features in ρH(H), and the coherence line in (Budko, 2004) (and Fig.

8.9) roughly corresponds to the beginning of the high field linear behavior in ρH(H). On

the other hand, the higher H − T magnetically ordered phase line cannot unambiguously be

associated with any feature in ρH(H) curves.

The most interesting feature shown in Fig. 8.14(a) though is the presence of the pronounced
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Figure 8.15 Revised tentative T−H phase diagram for H ‖ ab. Long range
magnetic order (LRMO) and the coherence temperature lines
marked on the phase diagram are taken from Ref. 2. Filled
stars and corresponding dashed line as a guide to the eye are
defined from the maximum in the ρH(H) curves.

peak, or local maximum, in ρH(H) that occurs at ≈ 45 kG for the T = 0.4 K curve and can be

followed up to temperatures above long range magnetic order transition temperatures. For T =

2.5 K a broad, local maximum in ρH , centered at H ≈ 100 kG can just barely be discerned. As

temperature is reduced this feature sharpens and moves down in field. For T = 1 K the local

maximum in ρH is clearly located at H ≈ 50 kG and by T = 0.4 K ρH has sharpened almost

to the point of becoming discontinuous with Hmax ≈ 45 kG. The temperature dependence

of Hmax is shown in Fig. 8.15 clearly demonstrating that as T → 0, Hmax → Hcrit for the

QCP. Independent of any theory these data clearly show that (i) ρH is an extremely sensitive
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method of determining Hcrit of QCP, (ii) Hmax has a clear temperature dependence, and (iii)

the QCP influences ρH up to T ≤ 2.5 K, a temperature significantly higher than the H = 0

antiferromagnetic ordering temperature.

The new phase line (shown as stars in Fig. 8.15) associated with ρH maximum is distinct

from the lines inferred from Cp(T, H) and ρ(T, H) data (Budko, 2004). As T → 0 this line ap-

proaches Hcrit, but for finite T it is well separated from the coherence line that was determined

by the onset of T 2 resistivity behavior. This new Hmax line rather clearly locates Hcrit at ∼ 45

kG, the field at which the long range antiferromagnetic order appears to be suppressed.

8.2.2.3 YbAgGe, H‖c

Since the response of YbAgGe to an applied magnetic field is anisotropic (Morosan, 2004;

Budko, 2004; Katoh, 2004; Umeo, 2004), it is apposite to repeat the Hall measurements for the

magnetic field applied parallel to the crystallographic c-axis. The temperature-dependent Hall

coefficient taken in different applied fields is presented in Fig. 8.16 (the low-field data were

obtained as described above). The RH(T ) behavior for H‖c is qualitatively similar to that for

H‖ab with a broad maximum being shifted to ∼ 30 K (as compared to ∼ 10 K for H‖ab) and

being less sensitive to the applied field.

The low temperature, field-dependent Hall resistivity for H‖c is shown in Fig. 8.17. In

many aspects the overall behavior is similar to that for H‖ab: there are no apparent features

associated with the phase lines derived from magnetoresistance and specific heat measurements

(Budko, 2004) (shown as lines in Fig. 8.17), however there is the presence of a pronounced

minimum in ρH(H) that occurs at ≈ 98 kG for the T = 0.4 K curve and can be followed up

to the temperatures well above the zero-applied-field magnetic transition temperatures. For

T = 2 K a broad, local minimum in ρH , centered at H ≈ 128 kG can still be recognized

and at T = 2.5 K a local minima occurs just at the edge of our field range. As temperature

is reduced this feature sharpens and moves down in field. The temperature dependence of

Hmin is shown in Fig. 8.18 clearly demonstrating that, similar to the H‖ab case, as T → 0,

Hmin → Hcrit for the QCP. The ρH(H) behavior for this orientation is more complex, and
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Figure 8.16 Temperature-dependent Hall coefficient of YbAgGe (H‖c)
measured in different applied fields down to 0.4 K.

there is an additional, broad maximum in lower fields (H ≈ 50 kG at 0.4 K) that fades out

with increasing temperature. This highly non-monotonic in field behavior is the origin of the

dissimilarities in the low temperature RH(T ) data (Fig. 8.16) taken in different applied fields.

The high field minimum in ρH(H) (Fig. 8.17) defines a new phase line (shown as stars in

Fig. 8.18) which is clearly different from the lines inferred from Cp(T, H) and ρ(T,H) data

(Budko, 2004). As T → 0 this line approaches Hcrit, but for finite T it is well separated

from the coherence line that was determined by the onset of T 2 resistivity behavior. For this

orientation of the applied field this new Hmin line rather clearly locates Hcrit at ∼ 100 kG, the

field at which the long range antiferromagnetic order appears to be suppressed.

It should be noted that the new lines in the H − T phase diagrams were established from

different types of extrema in ρH(H), maximum for H‖ab and minimum for H‖c. We neither
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Figure 8.17 Low temperature field-dependent Hall resistivity of YbAgGe
(H‖c); the curves, except for T = 0.4 K, are shifted by 1µΩ cm
increments for clarity; the lines represent the phase lines from
the phase diagram in Fig. 10(b) of the Ref. 2; the triangles
mark the position of the peak in ρH(H).

consider this difference as a reason for particular discomfort nor do we necessarily view it as a

potential clue to deeper understanding of the nature of the field-induced QCP in this material.

The preliminary band structure calculations (Samolyuk, 2004) on LuAgGe, the non-magnetic
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Figure 8.18 Revised tentative T − H phase diagram for H ‖ c. Long
range magnetic order (LRMO) and the coherence tempera-
ture lines marked on the phase diagram are taken from Ref.
2. Filled stars are defined from the minimum in the ρH(H)
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analogue of the title compound, suggest that the members of the RAgGe series have a complex

Fermi surface consisting of multiple sheets. In such a case a change in the Fermi surface may

possibly have different signatures in the Hall measurements with different field orientation. In

addition, existing QCP models appear not to be at the level of considering different shapes

and topologies of the Fermi surfaces.

Whereas these new, Hmax/Hmin lines on the H − T phase diagrams (Figs. 8.15 and 8.18)

appear to be closely related with the QCP their detailed nature and temperature dependencies

will require further experimental and theoretical attention.
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8.2.3 Summary

The temperature- and field-dependent Hall resistivity have been measured for YbAgGe

single crystals with H‖ab and H‖c orientation of the applied magnetic field. The temperature

dependent Hall coefficient of YbAgGe behaves similarly to other heavy fermion materials.

Low temperature, field-dependent measurements reveal a local maximum (H‖ab) or minimum

(H‖c) in ρH(H) for T ≤ 2.5 K that occurs at a value that approaches Hcrit ≈ 45 kG (H‖ab)

and Hcrit ≈ 90 kG (H‖c) as T → 0. These data indicate that (i) the Hall resistivity is indeed

a useful measurement for the study of QCP physics and (ii) the influence of the QCP extends

to temperatures significantly higher than the H = 0 antiferromagnetic ordering temperature.

8.2.4 Appendix

Coleman et al. (Coleman 2001) suggest that RH(P ) data (where P is a control parameter,

i.e. H in our case) can be used to distinguish between two possible QCP scenarios: diffraction

off of a critical spin density wave or a breakdown of the composite nature of the heavy electron,

with the former manifesting a change of slope at Pcrit and the latter manifesting a divergence in

the slope of RH(P ) at Pcrit. Since in our case the magnetic field is itself the control parameter,

it in not clear if RH = ρH/H, RH = dρH/dH or just simply ρH should be used for comparison

with the theory. RH(H) curves determined by two aforementioned ways are presented in Fig.

8.19 (H‖ab) and Fig. 8.20 (H‖c). For both definitions and both orientations the evolution of

a clear feature in RH(H) (defined as a local extremum for ρH/H and as a mid-point between

two different field-dependent regimes for dρH/dH) replicates (albeit with slight H-shift) the

behavior of the Hall resistivity (Figs. 8.14(a), 8.17). Given that the new phase line in Figs. 8.9a

and b is fairly insensitive to the data analysis we feel that the use of ρH(H) data is currently

the least ambiguous data set to analyze. On the other hand, if the form of the anomaly near

Hcrit is to be analyzed in detail it will be vital to have a more detailed theoretical treatment

of magneto-transport in field-induced QCP materials.

It is tempting to say that for the case of applied field as a control parameter the quantity

dρH(H)/dH (rather than ρH(H)/H) serves the role of the low-field Hall coefficient and should
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Figure 8.19 Field-dependent Hall coefficient of YbAgGe (H‖ab), defined as
(a) RH = ρH/H and (b) RH = dρH/dH, measured at different
temperatures. The curves, except for T = 0.4 K, are shifted
by (a) 0.02 nΩ cm and (b) 0.2 nΩ cm increments for clarity;
the triangles mark the position of the feature in RH(H): a
local maximum in ρH/H and a mid-point of the transition
between two different field-dependent regimes (see e.g. 0.8 K
curve)in dρH/dH. Curves in the (b) panel were obtained by
differentiation of the 5-adjacent-points-smoothed ρH(H) data.
Small downturn at H ≥ 130 kG in some dρH/dH curves (panel
(b)) is most likely an artifact of using digital smoothing and
differentiation.

be compared with the prediction of the models. If this point of view is accepted, then for

H‖ab the shape and evolution of the dρH(H)/dH curves (Fig. 8.19(b)) suggest that possibly

the composite fermion model of the QCP is more relevant to the case of YbAgGe, although

for H‖c the shape and evolution of the dρH(H)/dH curves (Fig. 8.20(b)) are at variance with

the simple theoretical views. The lack of the T < 0.4 K data and an absence of more detailed,

realistic-Fermi-surface-tailored, model do not allow us to choose the physical picture of the
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field-induced QCP in YbAgGe unambiguously.
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Figure 8.20 Field-dependent Hall coefficient of YbAgGe (H‖c), defined as
(a) RH = ρH/H and (b) RH = dρH/dH, measured at different
temperatures. The curves, except for T = 0.4 K, are shifted
by (a) 0.02 nΩ cm and (b) 0.1 nΩ cm increments for clarity;
the triangles mark the position of the feature in RH(H): a
local minimum in ρH/H and a mid-point of the transition
between two different field-dependent regimes (see e.g. 0.8 K
curve)in dρH/dH. Curves in the (b) panel were obtained by
differentiation of the 5-adjacent-points-smoothed ρH(H) data.
Small downturn at H ≥ 130 kG in some dρH/dH curves (panel
(b)) is most likely an artifact of using digital smoothing and
differentiation.
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CHAPTER 9. Magnetic field-induced quantum critical point in YbPtIn

and YbPt0.98In single crystals∗

9.1 Introduction

In recent years, stoichiometric Yb-based heavy fermion compounds have raised a lot of

interest, particularly due to the limited number of such systems known to date. YbPtIn is

one of the few examples of such heavy fermion systems (Trovarelli, 2000a; Kaczorowski, 2000;

Yoshii, 2004), as indicated by measurements performed on single crystal samples extracted from

on-line melts of the polycrystalline material. Based on the existing data (Trovarelli, 2000a;

Kaczorowski, 2000), YbPtIn has a relatively low magnetic ordering temperature (Tord ∼ 3

K) and an enhanced electronic specific heat coefficient (γ > 400 mJ/mol K2), whereas the

magnetic entropy at Tord amounts to only about 60% of the R ln 2 value expected for a doublet

ground state. In light of these observations, this system appears to be qualitatively similar

to the other recently studied Yb-based heavy fermion antiferromagnets, YbRh2Si2 (Trovarelli,

2000b; Gegenwart, 2002; Ishida, 2002; Paschen, 2003; Paschen, 2004), and YbAgGe (Beyer-

mann, 1998; Katoh, 2004; Morosan, 2004; Bud’ko, 2004; Bud’ko, 2005), the latter compound

isostructural to YbPtIn. In YbRh2Si2, magnetic order occurring at very low temperature

(below 70 mK) (Trovarelli, 2000b) was associated with a low entropy release (less than 0.45

∗ R ln 2) at T ∼ 10 K. For the YbAgGe (Morosan, 2004; Bud’ko, 2004) compound, the

temperature associated with the magnetically ordered state, whereas still fairly low (∼ 1.0

K), is enhanced compared to that of YbRh2Si2; also, the magnetic entropy at the ordering

temperature is larger than in YbRh2Si2, but still less than 10% of R ln 2. Thus these two
∗after ”Magnetic field-induced quantum critical point in YbPtIn and YbPt0.98In single crystals”, E. Mo-

rosan, S. L. Bud’ko, Y. A. Mozharivskyj and P. C. Canfield, submitted to Phys Rev B (June, 2005).
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compounds can be regarded as systems with small moment ordering. Having an even higher

ordering temperature and magnetic entropy at Tord, YbPtIn seemed a good candidate to fur-

ther study a progression from small moment to reduced moment ordering, in stoichiometric

Yb-based heavy fermion compounds, with field-induced quantum critical point.

In contrast to a classical phase transition at finite temperatures, driven by temperature as a

control parameter with thermal fluctuations, a quantum phase transition is driven by a control

parameter C other than temperature (e.g., C = pressure, doping or magnetic field) at T =

0, with quantum mechanical fluctuations. Such a control parameter tunes the system from a

magnetically ordered state towards a disordered state, at zero temperature, crossing a quantum

critical point. Due to the hybridization of the 4f electrons and the conduction electrons in

heavy fermion HF systems, which can be modified by any one of the aforementioned C control

parameters, the HF compounds are very suitable to study quantum critical behavior. Moreover,

close to the critical value Ccrit which drives the ordering temperature close to zero, pronounced

deviations from the Fermi liquid-like FL behavior can occur. This has been observed in a large

number of HF systems where C = doping or pressure, and only a few doped systems have been

field-tuned through a QCP (Stewart, 2001). To date, YbRh2Si2 (Trovarelli, 2000b; Gegenwart,

2002; Ishida, 2002; Paschen, 2003; Paschen, 2003) and YbAgGe (Beyermann, 1998; Katoh,

2004; Morosan, 2004; Bud’ko, 2004; Bud’ko, 2005) are the only stoichiometric Yb-based HF

compounds in which a field-induced quantum critical point QCP has been observed. The

heavy fermion character of the YbPtIn system has already been reported (Trovarelli, 2000a;

Kaczorowski, 2000); in this paper we will discuss the existence of a field-induced QCP in

YbPtIn which has not been yet studied, and which renders it very similar to the other two

stoichiometric, Yb-based heavy fermions.

In Chapter 7 we presented anisotropic low-field susceptibility measurements, as well as

specific heat data in zero applied field, on solution-grown single crystals of the RPtIn series,

including YbPtIn. No features indicative of magnetic order could be identified in our magneti-

zation measurements on single crystals of the R = Yb compound, down to T ∼ 2 K. However, a

well-defined peak at T = 2.1 K in the zero-field specific heat data suggests that this compound
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orders magnetically below 2.1 K, just above the low temperature limit of our magnetization

measurements. As we will present in this paper, detailed transport and thermodynamic mea-

surements down to 0.4 K not only confirm the magnetic ordering in this compound below 2.1

K, but also suggest that another phase transition might exist in this system around 1 K.

However, our measurements were in part inconsistent with all previous reports on YbPtIn

single crystals: whereas Kaczorowski et al. (Kaczorowski, 2000) have also presented mag-

netization data showing no features associated with magnetic ordering above 1.7 K, in their

specific heat measurements three anomalies can be observed (at 3.1, 2.3, and 1.2 K), all at

slightly different temperatures than in our data. Furthermore, the low-field susceptibility data

presented by Trovarelli et al. (2000a) are consistent with an ordering temperature around 3.4

K, also confirmed by their resistivity and specific heat measurements.

In order to address these apparent discrepancies between our data on solution grown sin-

gle crystals and the two previous reports on on-line grown single crystals (Trovarelli, 2000a;

Kaczorowski, 2000), we reproduced the growth as described by Trovarelli et al. (2000a). The

anisotropic specific heat and transport measurements on our single crystals extracted from the

melt confirmed the existence of magnetic phase transitions at 3.4 K and 1.4 K, as observed

previously.

In this chapter we will try to examine the differences between solution and on-line grown

single crystals, given that a small Pt-deficiency occurred in the former types of crystals, leading

to a stoichiometry closest to YbPt0.98In; no disorder could be detected in the on-line grown

crystals. Also, given that heavy fermion compounds with small moment ordering can be driven

to a quantum critical point QCP by disorder or applied field, we will study the evolution of

both YbPt0.98In and YbPtIn towards a field-induced QCP. Detailed anisotropic measurements

of specific heat and resistivity on the two types of crystals, for fields up to 140 kG and tem-

peratures down to 0.4 K, will be used for the comparison between the two types of crystals.

Additional Hall effect measurements were performed on the solution grown single crystals for

the same temperature and field ranges, allowing us to further explore the effects of the QCP

in this compound.
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Following the results of single crystal x-ray diffraction, we will compare the low field data for

the two types of compounds, pointing out the similarities, as well as the significant differences

in their physical properties. Next we will present the higher field data for both types of

crystals, for H ‖ ab and H ‖ c. This will allow us to follow, in both systems, the progression

from reduced magnetic moment order to the quantum critical point QCP, as driven by the

application of increasing magnetic field. Also, we will extend the zero-field comparison between

the two YbPtIn systems to their field- dependent properties, and will try to identify common

features as well as possible effects of the site deficiency.

9.2 Results

9.2.1 Crystal structure

For both solution and on-line grown crystals, the crystal structure was confirmed by powder

x-ray diffraction, with no detectable impurity peaks. However, additional single crystal x-

ray measurements were performed on the two types of YbPtIn compounds. Crystals with

dimensions ∼ 2 × 7 × 11 µm3 and ∼ 2 × 6 × 13 µm3 were extracted from the flux and

on-line grown samples respectively. Room-temperature X-ray diffraction data were collected

on a STOE IPDSII image plate diffractometer with Mo Kα radiation, and were recorded by

taking 10 scans in θ in the full reciprocal sphere. The range of 2 θ extended from 60 to

630. Numerical absorption corrections for both crystals were based on crystal face indexing,

followed by a crystal shape optimization. Structure solution and refinement were done using

the SHELXTL program. The crystallographic and structural data are summarized in Tables

9.1 - 9.2.

A high temperature factor was observed for Pt(1) of the flux-grown crystal during final

stages of the refinement, which is usually indicative of possible atomic deficiencies, symmetry

reduction or superstructure formation. No superstructure reflections were observed, and sym-

metry reduction did not resolve the issue. However, relaxing Pt(1) site occupancy resulted in

a statistically significant deficiency (0.06(1), Table 9.1), and led to improvements in the Pt(1)

temperature factor and overall residual R value. We also tested for possible deficiencies on
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Table 9.1 Atomic coordinates and equivalent isotropic displacement pa-
rameters (Å2) for the flux-grown YbPtIn system. U(eq) is de-
fined as one third of the trace of the orthogonal Uij tensor. Space
group P 6 2 m, a = 7.5568(8) Å, c = 3.7658(3) Å, R = 0.0273,
Rω = 0.0598.

Occupancy x y z U(eq)

Yb 1.00 0.5940(1) 0 0 0.0088(3)

Pt(1) 0.94(1) 0 0 0 0.0099(5)

Pt(2) 1.00 1/3 2/3 1/2 0.0075(3)

In 1.00 0.2604(2) 0 1/2 0.0093(4)

the other atomic sites in this crystal, but refined occupancies for Yb (1.00(6)), Pt(2) (1.00(6))

and In (1.02(2)) did not suggest presence of atomic deficiencies. Thus the composition of the

flux-grown crystal can be written as YbPt0.98In, noting that the Pt0.98 value reflects the Pt

stoichiometry of the whole unit cell, not just of the Pt(1) site. In contrast to the flux-grown

sample, the Pt(1) temperature factor of the on-line grown crystal had a reasonable value.

Relaxing the Pt(1) occupancy yielded only a slight and statistically insignificant deficiency

of 0.014(9) (Table 9.2). Occupancy refinement for other atomic sites showed no deviations

from unity. Although small deficiencies on the Pt(1) site could not be excluded, the YbPtIn

formula is a good presentation of the composition of the on-line crystal in terms of sensitivity

of our X-ray diffraction experiments. This difference in the stoichiometry of the solution and

on-line grown samples is consistent with YbPtIn having a small width of formation extending

towards the Pt-deficient side; given that the initial melt composition is very Pt-poor (i.e.,

Yb0.4Pt0.1In0.5), it is expected to be sensitive to such a small width of formation.

A closer look at the atoms’ positions given in Tables 9.1-9.2 suggests that two compounds

might be mirror images of each other; whereas racemic twinning could not be excluded for



221

Table 9.2 Atomic coordinates and equivalent isotropic displacement pa-
rameters (Å2) for the on-line-grown YbPtIn system. U(eq) is
defined as one third of the trace of the orthogonal Uij tensor.
Space group P 6 2 m, a = 7.5486(12) Å, c = 3.7617(7) Å, R =
0.0217, Rω = 0.0453.

Occupancy x y z U(eq)

Yb 1.00 0.4052(1) 0 0 0.0076(2)

Pt(1) 0.986(9) 0 0 0 0.0082(4)

Pt(2) 1.00 1/3 2/3 1/2 0.0071(2)

In 1.00 0.7378(2) 0 1/2 0.0071(2)

either the solution or the on-line grown compounds, no evidence of the existence of both ”left”

and ”right” structures in each system could be found.

The lattice parameters and unit cell volume for the solution-grown, YbPt0.98In crystals

were a = (7.55 ± 0.01) Å, c = (3.76 ± 0.01) Å and V ol = (186.28 ± 0.51)

Å3. The analogous unit cell dimensions on the on-line grown crystals were slightly smaller:

a = (7.54 ± 0.01) Å, c = (3.75 ± 0.01) Å and V ol = (185.61 ± 0.11) Å3.

9.2.2 Low magnetic field comparison

Anisotropic magnetization measurements are presented in Fig.9.1 for both the YbPt0.98In

(full symbols) and the YbPtIn (open symbols) compounds. As can be observed in Fig.9.1a, the

paramagnetic susceptibility indicates moderate anisotropy for both systems (with χab /χc ∼ 6

at the lowest temperature), and no clear sign of magnetic ordering down to T = 1.8 K. The

anisotropic M(H) isotherms show a continuous increase of the magnetization, with a trend

towards saturation above 40 kG (Fig.9.1b) for H applied within the ab-plane; the axial magne-

tization remains linear and significantly smaller than Mab up to our maximum field available
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Figure 9.1 (a) Anisotropic susceptibilities for H = 2 kG (with
the low-temperature part enlarged in the inset) and (b)
field-dependent magnetization at T = 2 K for YbPtIn (open
symbols) and YbPt0.98In (full symbols).

for these measurements (55 kG). Whereas qualitatively there is an overall similarity between

the corresponding data of the two compounds, the absolute values of both susceptibility and

field-dependent magnetization are slightly larger for YbPt0.98In than for YbPtIn. We believe

the ∼ 10 to 20% difference to be too large to have been caused by weighing errors alone, and

thus we conclude that it may reflect the different Kondo temperatures and exchange coupling

due to the change of stoichiometry in the two compounds.

The zero-field specific heat and resistivity data shown in Fig.9.2 are consistent with mag-
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Figure 9.2 (a) Low-temperature specific heat and (b) resistivity data for H
= 0, for YbPtIn (open symbols) and YbPt0.98In (full symbols),
with the resistivity error bars shown for the lowest temperature
(T = 0.4 K); the transition temperatures are indicated by two
dotted lines (for YbPtIn) and one dashed line (for YbPt0.98In).

netic ordering in both compounds, however at different temperatures: two well defined peaks at

T ≈ 3.4 K and 1.4 K are visible in the YbPtIn CP (T) data (open symbols, Fig.9.2a), whereas

only one peak can be distinguished, around 2 K, in the YbPt0.98In data (full symbols). These

transition temperatures are marked by the vertical dotted lines for the former compound, and

by one dashed line for the latter. It can be seen that the corresponding resistivity measurements
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(Fig.9.2b) show changes in slope around the respective transition temperatures. Another no-

ticeable difference between YbPtIn and YbPt0.98In manifests in the resistivity values (Fig.9.2b

and 9.3) with the ones for the former compound being approximately three times smaller in

the latter one. The error bars shown for the lowest temperature ρ values give a caliper of

the uncertainty in estimating the resistivity values for the two compounds, further confirming

the aforementioned difference. The larger residual resistivity in YbPt0.98In is consistent with

the additional disorder (i.e., site disorder) or presence of additional vacancies in this type of

crystals.

0 50 100 150 200 250 300
0
5

10
15
20
25

50

60

70

80

H = 0

H = 140 kG

H = 140 kG

H = 0 YbPt0.98In

YbPtIn

H||ab

 

 

(
 c

m
)

T(K)

Figure 9.3 Temperature-dependent resistivity for YbPt0.98In and YbPtIn,
for H = 0 (symbols) and H = 140 kG (solid lines).

Thus the zero-field measurements indicate a dramatic effect of the small Pt-deficiency on

the ordered state in YbPtIn: the upper transition is shifted down in temperature in the Pt-

deficient compound, whereas a second one is clearly identifiable only in YbPtIn. In order to

explore the differences between these two samples more thoroughly, a systematic study of the

field-dependence of ρ(T ) and Cp(T ) was undertaken.
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9.2.3 High magnetic field measurements: YbPtIn

9.2.3.1 H ‖ ab

The low-temperature specific heat data for the on-line grown compound YbPtIn is shown

in Fig.9.4a, for various values of the applied field. As already seen, two sharp peaks present in

the H = 0 data can be associated with magnetic phase transitions at T = 3.4 K and 1.4 K. As

the applied field is increased, these transitions (indicated by small arrows in Fig.9.4a) move to

lower temperatures, and eventually drop below 0.4 K around 20 kG, and 60 kG respectively.

Trovarelli et al. (2000a) have reported similar measurements up to 80 kG, which are consistent

with our data; however, their study did not include a systematic analysis of the H - T phase

diagram or the potential quantum critical behavior in this compound.

The magnetic component of the specific heat is defined as Cm = CP (YbPtIn)− CP (LuPtIn),

and is shown in Fig.9.4b as Cm / T vs. T2, for the same field values as before. From the linear

extrapolation of the zero-field Cm / T data from T ∼ 5 K down to T = 0 (inset, Fig.9.4b), the

electronic specific heat coefficient γ can be roughly estimated as γ ' 500 mJ / mol K2.

When the magnetic specific heat is plotted in Cm /T vs. ln T coordinates (Fig.9.5), a

reduced region of logarithmic divergency (non-Fermi liquid NFL behavior) is apparent; however

this linear region in Cm /T (lnT ) is more ambiguous than in other heavy fermion compounds

displaying NFL behavior (e.g., YbRh2Si2 (Trovarelli, 2000b) and YbAgGe (Bud’ko, 2004).

Because of a downturn in the high field data (H ≥ 50 kG [Fig.9.5b]) around 5 K for H =

50 kG, the largest logarithmic divergency which occurs for H ∼ 60 kG, is limited to only a

fraction of a decade in temperature (1.5 K < T < 6.5 K). The above observations suggests

that a QCP may exist around a critical field value Hab
c just above 60 kG, but the presence of

a NFL region at intermediate field values is less clearly defined than in the previously studied

Yb-based heavy fermion compounds.

One of the expressions considered in the scaling analysis at a QCP (Tsvelik, 1993) is the

cross-over function [C(H) − C(H = 0)] / T vs. H/T β. In the case of YbRh2Si2 (Paschen,

2004) and YbAgGe (Bud’ko, 2005), the H/T β range over which universal scaling was observed

in high fields corresponded to 1/T < 3 K−1, and 1.2 K−1 respectively (with β > 1). Due to



226

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000
(b)

 

C
m
 / 

T 
(m

J 
/ m

ol
*K

2 )

T2(K2)

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000
YbPtIn
  H||ab

(a)  H =  0               H =  60 kG
 H = 10 kG        H =  70 kG
 H = 20 kG        H =  80 kG
 H = 30 kG        H = 100 kG
 H = 40 kG        H = 120 kG
 H = 50 kG        H = 140 kG

 

 

C
P (

m
J 

/ m
ol

 K
)

T(K)

0 5 10 15 20 25
0

500

1000

1500

2000

2500

0
  500 mJ/mol K2

H = 0

 

Figure 9.4 (a) Low-temperature specific heat curves for YbPtIn, for H
‖ ab; arrows indicate the peak positions, associated with
magnetic phase transitions. (b) low-temperature part of the
Cm/T (T2) curves for various values of the applied field; inset:
the H = 0 Cm/T (T2) curve, with its linear fit below 5 K (dotted
line) extrapolated down to T = 0 to provide a rough estimate
of the electronic specific heat coefficient γ ' 500 mJ / mol K2.

the slightly enhanced magnetic ordering temperature Tord = 3.4 K in YbPtIn, the analogous

1/T range is drastically reduced (1/T < 0.3 K−1), making the unambiguous determination of

the critical exponent β essentially impossible.

Low-temperature resistivity curves for different values of the applied magnetic field are
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Figure 9.5 Semi-log plot of Cm/T vs. T for (a) H = 0 - 50 kG and (b)
H = 50 - 140 kG. All curves (except for the H = 140 kG one)
are shifted up by multiples of 100 mJ/mol K2. The dotted line
(for H = 60 kG) is a guide to the eye for the largest region of
logarithmic divergency of Cm/T .

shown in Fig.9.6. The ρ(T ) |H data are consistent with the presence of two magnetic phase

transitions at low fields; the small arrows indicate these transition temperature values, as

determined from maxima in the dρ/dT . Both these transitions are suppressed by increasing

applied field. Whereas the upper transition persists for 50 kG< H < 60 kG, a field of about 20

kG is sufficient to drive the lower one below our base temperature of 0.4 K. It is worth noting

that the critical field Hab
c ∼ 60 kG, determined from the ρ(T,H) data as the field required to
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Figure 9.6 Low-temperature resistivity data for YbPtIn taken at different
applied fields, for H ‖ ab; the small arrows indicate the mag-
netic transition temperatures.

suppress the magnetic ordering, is close to the position of the QCP as inferred based on the

CP data (Fig.9.4).

At intermediate field values (60 kG< H < 70 kG), no clear NFL regime (ρ ∝ T ) can

be identified in the resistivity data (Fig.9.7), as it is unclear whether linear regions exist

at low T, for either ρ(T) or ρ(T2). However, for H > 70 kG the low-T resistivity data

is possibly indicating Fermi liquid-like FL behavior (Fig.9.7b,c), as it can be described by

ρ(T ) = ρ0 + A T 2. On the ρ vs. T2 plot, the upper limit of the linear regions are marked

with small arrows for each field value. These maximum temperatures appear to become larger

as the applied field is being increased, despite the scattering of the data towards low T, which

increases the error bars on these cross-over temperature values.

When magnetoresistance measurements (ρ(H) |T ) are performed (Fig.9.8) three features

are apparent at very low temperatures, as indicated for T = 0.4 K by the small arrows. The

inset shows ρ(H) at T = 0.8 K, to exemplify how these transition temperatures were inferred

from these data. For T ≥ 1 K, the two lower transitions merge and the resulting one is still



229

0 4 8 12 16

7

8

9

10

0 1 2 3 4 5 6

8

10

12

0 1 2 3 4 5
8

12

16

20

T2(K2)

(c)

140kG

120kG

100kG

(b)

T2(K2)

100kG

80kG

70kG

60kG

(a)

70kG

60kG
50kG

40kG

YbPtIn
 H||ab

 

 (
 c

m
)

T(K)

Figure 9.7 Low-temperature part of the (a) ρ(T) data for H = 40, 50, 60
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distinguishable up to approximately 1.4 K. The upper transition moves down towards zero

field as the temperature approaches TN = 3.4 K.

Based on the above field- and temperature-dependent thermodynamic and transport mea-

surements, a T − H phase diagram for H ‖ ab can be constructed (Fig.9.9): in zero magnetic

field, two magnetic phase transitions can be observed, around TN = 3.4 K and Tm = 1.4

K. Increasing magnetic field splits the lower transition into two separate ones around H ∼ 10

kG; one of these phase lines drops towards our lowest temperature at almost constant field,

whereas the second one has a slower decrease with field, such that it approaches T = 0.4 K

around H = 20 kG. In a similar manner, the upper transition is driven down towards 0 around

Hc = 60 kG.

Upon further increasing the applied field, another line emerges around the Hab
c ≈ 60

kG critical field value. The points on this line represent a crossover between a possible non-

Fermi liquid-like NFL regime (high temperatures), and a Fermi liquid like FL regime (for low

temperatures). This is analogous, even though less clear (as indicated by the large error bars)
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Figure 9.9 H ‖ ab T - H phase diagram for YbPtIn, as determined from
resistivity (full symbols) and specific heat (open symbols) data.
Note the error bars on the high-field points representing the
uncertainty in determining the cross-over temperatures.

to the coherence line (Continentino, 1989) previously observed in YbRh2Si2 (Paschen, 2004)

and YbAgGe (Bud’ko, 2005). Although measurements below 0.4 K would be necessary for a

better estimate of the quantum critical point QCP in this field orientation, Fig.9.4-9.9 suggests

that Hab
c ≈ 60 kG.

9.2.3.2 H ‖ c

Fig.9.10 presents specific heat data for YbPtIn, H ‖ c, for fields up to 80 kG. High torques

on this sample for this orientation of the field prevented us from completing these measurements

up to 140 kG. Moreover, as will be shown below, there are significant discrepancies between

the transition temperatures determined even from the intermediate-field specific heat data and

the transport measurements (i.e., for H ≥40 kG). This observation prompts us to suspect that

significant torques may have changed the sample orientation for the specific heat measurements,

even for fields significantly lower than 80 kG.
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Figure 9.10 H ‖ c specific heat data for YbPtIn, for H = 0, 10, 20, 40,
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arrows: peaks on CP (T ) data for possibly torqued sample [see
text]).

In zero field, we can confirm the two magnetic transitions observed before, at TN = 3.4

K, and Tm = 1.4 K respectively; as the small arrows indicate, the lower-T transition is driven

down in field, and falls below 0.4 K for H > 40 kG, whereas the upper transition persists

above 80 kG.

The temperature and field dependent resistivity data (Fig.9.11-9.12) indicate a much slower

suppression of the magnetic order with the applied field. In Fig.9.11a, ρ(T ) curves are shown,

with the arrows indicating the transition temperatures as determined from dρ/dT . Fig.9.11b

presents a subset of these derivatives, to illustrate the criteria for determining the temperatures:

for the lower transition, a peak in dρ/dT broadens as field is increased, and disappears for H

> 80 kG; the upper transition is marked by a step in these derivatives, which also broadens

as H increases. At the highest measured field (i.e., 140 kG) we are unable to distinguish

between a very broad step (with a possible transition temperature marked by the small arrow)

or a cross-over in corresponding dρ/dT . The field-dependent resistivity data (Fig.9.12) are
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indicative of a low temperature transition consistent with that seen in ρ(T ), with the critical

fields determined from on-sets.

0 1 2 3 4 5 6 7

0

4

8

12

16

20

0 1 2 3 4 5 6 7
8

12

16

20

24

 H = 20 kG
 H = 80 kG
 H =100 kG
 H =120 kG
 H =140 kG

(b)

 

d
/d

T 
(

 c
m

/K
)

T(K)

 T(K)

(a) YbPtIn
   H||c

 

 

 (
 c

m
)

 H = 0           H = 80 kG
 H = 20 kG   H = 100 kG
 H = 40 kG   H = 120 kG
 H = 60 kG   H = 140 kG

Figure 9.11 (a) Low-temperature ρ(T) data for YbPtIn taken at different
applied fields, for H ‖ c. (b) dρ/dT curves for H = 20, 80,
100, 120 and 140 kG. On both plots, the small arrows indicate
the magnetic transition temperatures.

Given the above CP (T,H) and ρ(T,H) data, we suspect that magnetic fields H > 20 kG

deform the four wires supporting the He-3 specific heat platform used for the CP (T,H) mea-

surements, whereas the resistivity sample appears to be well held in place by grease on the
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Figure 9.12 ρ(H) isotherms for T = 0.4, 0.5, 1 - 4 K (∆T = 0.25 K) and 5
K. Small arrow indicates the critical field position at the lowest
temperature (T = 0.4 K).

rigid platform. Consequently, at high fields, the two sets of data (CP (T,H) and ρ(T,H)) may

not correspond to the same orientation of the field (H ‖ c), yielding different transition

temperature values for the corresponding applied fields.

As a result, in constructing the T - H phase diagram for H‖ c (Fig.9.13), we will consider

the Tc values as determined from the ρ(T,H) data up to H = 140 kG, and only the H ≤ 20 kG

ones based on specific heat measurements. Also shown are error bars for points determined

from ρ(T) data at several field values (i.e., for H = 20, 80, 100, 120 and 140 kG), and for

the point obtained from ρ(H) at our minimum temperature (T = 0.4 K); these give a caliper

of the errors bars in determining the points on this phase diagram for the whole field and

temperature range. Two transitions can be observed in Fig.9.13, at low fields, around 3.4 K,

and 1.4 K respectively. As H is being increased, the low temperature line slowly approaches T

= 0 around H ∼ 85 kG. The step in dρ/dT associated with the upper transition (Fig.9.11b)

broadens as the field increases, resulting in increasingly large error bars in determining these

transition temperatures. As already mentioned, it is uncertain if the transition persists up to



235

0 20 40 60 80 100 120 140
0

1

2

3

4
YbPtIn
  H||c

 

 

T(
K

)

H(kG)

 from R(T)
 from R(H)
 from C

p
(T)

Figure 9.13 H ‖ c T - H phase diagram for YbPtIn, as determined from
resistivity (full symbols) and specific heat (open symbols) data.
Error bars on points from ρ(T) data at H = 20, 80, 100, 120
and 140 kG, and from ρ(H) at T = 0.4 K shown as a caliper
of the errors in determining the points on this phase diagram.

H = 140 kG, or if cross-over occurs between 120 and 140 kG.

9.2.4 High magnetic field measurements: YbPt0.98In

9.2.4.1 H ‖ ab

Given the differences between YbPtIn and YbPt0.98In evidenced by both thermodynamic

and transport data (Figs.9.1-9.3), it is desirable to compare similar measurements on the two

compounds, and to study the effect of the small stoichiometry change on the field-induced

QCP.

Consequently, in Fig.9.14 we present the low-temperature specific heat data of YbPt0.98In,

for various values of the applied field H ‖ ab. A well-defined peak at T = 2.1 K in the H = 0

data may be associated with the magnetic ordering of this compound. As the applied magnetic

field is increased, this transition (indicated by small arrows) moves to lower temperatures, and

eventually drops below 0.4 K around 35 kG. By plotting the magnetic specific heat data
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Figure 9.14 (a) Low-temperature specific heat curves for YbPt0.98In, for H
‖ ab; arrows indicate the positions of the peaks associated with
magnetic ordering. (b) low-temperature part of the Cm/T (T2)
curves for various values of the applied field; inset: the H =
0 Cm/T (T2) curve, with its linear fit below 5 K (dotted line)
extrapolated down to T = 0 to provide a rough estimate of
the electronic specific heat coefficient γ ' 500 mJ / mol K2.

Cm = CP (YbPt0.98In) − CP (LuPtIn) as Cm / T vs. T2 (Fig.9.14b), we can estimate the

electronic specific heat coefficient γ: the linear extrapolation of the H = 0 data from T ∼ 5

K down to T = 0 (inset, Fig.9.14b), gives γ ≈ 500 mJ / mol K2.

Fig.9.15 shows the magnetic specific heat as Cm / T vs. ln T , for the same field values as
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Figure 9.15 Semi-log plot of Cm/T vs. T for (a) H = 0 - 40 kG and (b)
H = 40 - 140 kG. All curves (except for the H = 140 kG one)
are shifted up by multiples of 200 mJ/mol K2. The dotted
lines (for H = 35 and 40 kG) are guides to the eye for the
linear regions on the Cm/T curves for H possibly just above
and below Hab

c (see text).

before. A logarithmic divergence can be observed in these data, with the largest temperature

region where Cm / T (lnT ) occurring around H = 35 kG (dotted line). However, on the next

measured curve (i. e., for H = 40 kG) the linear region extends over a comparable temperature

interval, at slightly larger temperatures than in the H = 35 kG case. It thus appears that the

largest temperature region (close to a decade) for the logarithmic divergency of the Cm/T
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Figure 9.16 YbPt0.98In low-temperature resistivity data for H ‖ ab, for
(a) H = 0, 10, 20, 25, 30, 35 and 40 kG and (b) H = 42.5, 45,
50, 55, 60, 70, 80, 100, 120 and 140 kG. In (a) small arrows
indicate the possible ordering temperatures, whereas dotted
lines in (b) are guides to the eye pointing out the regions of
linear ρ(T ) (or the departure from linearity at low T for the
H = 55 kG curve [see text]).

data may occur for some intermediate field value (35 kG < H < 40 kG). These data could be

described as Cm / T = γ′0 ln(T0/T ), with the ranges for γ′0 and T0 determined from the linear

fits on the H = 35 and 40 kG curves: 420 mJ/mol K2 < γ′0 < 430 mJ/mol K2, and 14.7 K

> T0 > 13.5 K. The above observations seem consistent with a QCP in this compound with

critical field above 35 kG.



239

0 2 4 6 8 10
49

50

51

52

53

80kG

100kG

120kG

140kG

(b)

 

 

 (
 c

m
)

T2(K2)

0 1 2 3 4 5

52

54

56

58
YbPt0.98In
   H||ab

80kG

60kG

55kG

70kG

50kG
(a)

 

 

 (
 c

m
)

T2(K2)

Figure 9.17 Low-temperature part of the YbPt0.98In ρ(T2) data, for (a) H
= 50, 55, 60, 70 and 80 kG and (b) H = 80, 100, 120 and 140
kG, with their respective linear fits at very low T (solid lines).
The arrows indicate the temperatures at which deviations from
the T2 behavior occur.

Fig.9.16 shows the low-temperature resistivity data for various values of the applied mag-

netic field. A maximum in dρ/dT , associated with the magnetic ordering can be identified at

T = 2.1 K in the H = 0 data, and is indicated by small arrow in Fig.9.16a; this transition

temperature appears to drop below 0.4 K as field is increased above 35 kG (Fig.9.16b), consis-

tent with the specific heat data. For applied fields between 40 kG and 50 kG, the resistivity
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appears to be linear in temperature down to our base temperature, as indicated by the dotted

lines in Fig.9.16; a dotted line for the H = 55 kG curve is also shown on the same plot, to

emphasize the non-linear temperature dependence towards low T of the respective ρ(T ) curve.
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Figure 9.18 ρ(H) isotherms for YbPt0.98In, for H ‖ ab and (a) T = 0.4 -
1.0 K (∆T = 0.1 K), 1.2 - 2.2 K (∆T = 0.2 K), and (b) T =
2.2 - 3.0 K (∆T = 0.2 K), 4, 6, 8 and 10 K; the arrows point to
the transition fields at T = 0.4 K, with the inset exemplifying
how these critical fields were determined.

As the field is increased above 55 kG, the low-temperature resistivity can be described

as ρ(T ) = ρ′0 + AT 2 (Fig.9.17), up to some maximum temperature values marked by

small arrows. These temperatures mark the cross-over from the non-Fermi liquid NFL region

observed at intermediate fields (40 kG < H < 50 kG), to a Fermi liquid-like FL regime at

low temperatures for H ≥ 55 kG, consistent with the specific heat data. Similar to the case
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of YbPtIn, the linear range observed in ρ(T 2) increases with increasing field, whereas the A

coefficient is decreasing with H.

Transverse magnetoresistance measurements were taken at constant temperatures ranging

from 0.4 K to 10 K. As shown in Fig.9.18, two different temperature regimes can be identified

in these data: for T = 0.4 − 1.8 K (Fig.9.18a), two transitions can be distinguished. The

small arrows mark the positions for these two transitions for T = 0.4 K, whereas the inset

illustrates how these critical field values were determined. As the temperature increases up to

about 1.8 K, the upper transition moves down in field and broadens, whereas the position of

the lower one seems almost unaffected by the change in temperature. For temperatures higher

than 2 K (Fig.9.18b), the magnetoresistance isotherms display only a broad feature that looks

more like a cross-over rather than a transition.
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Figure 9.19 H ‖ ab phase diagram for YbPt0.98In, as determined based
on specific heat (open symbols) and transport (full symbols)
data. The error bars on the high-field points represent the
uncertainty in determining the cross-over temperatures.

Using the detailed CP (T,H) and ρ(T,H) measurements discussed above, the YbPt0.98In T -

H phase diagram for H ‖ ab can be constructed. As can be seen in Fig.9.19, it is qualitatively
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similar to the corresponding T - H phase diagram for the stoichiometric compound (Fig.9.9):

in YbPt0.98In magnetic ordering occurs at around 2.1 K. An almost field independent phase

line is apparent in the ρ(H) |T data around 8 kG, and it appears to persist close to the

magnetic ordering temperature. Increasing applied field drives the higher transition towards

T = 0 at a critical field values between 35 and 55 kG. At intermediate field values, signatures

of NFL behavior occur in the temperature-dependent resistivity (∆ρ(T ) ∼ T ) and specific

heat (Cm/T ∼ − lnT ) for this compound. As field is increased above 55 kG, the FL regime

is apparently recovered, as the resistivity becomes quadratic in T (Fig.9.17).
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Figure 9.20 H ‖ c specific heat data for YbPt0.98In, for H = 0,20 and
40 kG; small arrows indicate the positions of peaks possibly
associated with the magnetic phase transition.

The similarities observed previously between YbPtIn and YbPt0.98In are also present for

the H ‖ c direction, as the CP (T,H) and ρ(T,H) measurements indicate. As in the case of

the stoichiometric compound, significant torques on the specific heat platform and sample for

H ≥ 50 kG may be the cause of the different transition temperature values, as determined by
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Figure 9.21 (a) YbPt0.98In low-temperature resistivity data for H ‖ c, for
H = 0 - 140 kG (∆H = 10 kG), with the large dots marking the
possible magnetic ordering temperature; inset: H = 0 dρ/dT,
with the small arrow marking the transition temperature. (b)
ρ(H) isotherms for T = 0.4 - 3.0 K (∆T = 0.1 K). The critical
fields for the possible phase transition were determined as local
maxima in dρ/dH (as illustrated in the inset for T = 1.2 - 1.6
K), and are shown as large squares.
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the two data sets mentioned above. Therefore we will only take into consideration CP (T,H)

data for H < 50 kG (Fig.9.20). Similar to the H ‖ ab measurements (Fig.9.14), the H ‖ c

CP curves reveal a magnetic transition around 2.1 K for H = 0 (Fig.9.20), which drops to ∼
2 K for H = 40 kG, before the sample torques significantly; small arrows indicate the position

of the transition temperature for the three curves shown in Fig.9.20.
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Figure 9.22 T - H phase diagram for YbPt0.98In (H ‖ c), as determined
from the specific heat (open symbols) and resistivity (full sym-
bols) measurements.

The temperature and field dependent resistivity data (Fig.9.21) indicate a slow suppression

of the magnetic order with the applied field. Fig.9.21a shows the ρ(T) curves in various applied

fields, with the large circles marking the phase transition as determined from dρ/dT ; the inset

illustrates how the transition temperature was determined for H = 0. Whereas at H = 0 the

transition temperature is consistent with the value determined from CP data (Tord ∼ 2.2

K), the critical field required to suppress this transition below our base temperature appears

to be around 120 kG. Given the limited temperature range at these high fields, for H = 130

and 140 kG we were unable to distinguish a linear or quadratic temperature dependence of the

resistivity. The magnetoresistance isotherms are presented in Fig.9.21b, and the large squares
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on this plot also indicate the high-T magnetic phase transition; in the inset, a few dρ/dH

curves are shown to illustrate how the critical field values for the transition were determined.

Based on the CP (T,H) and ρ(T,H) presented above, the H ‖ c T - H phase diagram for

YbPt0.98In can be obtained, as shown in Fig.9.22. At low fields, this T - H phase diagram is

consistent with the in-plane one for this compound: a magnetic transition is apparent around

2.1 K, but the possible second one around 1.0 K is not visible in the H‖c measurements; the T

' 2.1 K transition is driven down in temperature by increasing applied fields, and it approaches

our base temperature (i.e., 0.4 K) around 120 kG. Lack of measurements below 0.4 K limits

our ability to probe the existence of a QCP in this orientation, similar to the one at Hab
c = 35

kG for H ‖ ab.

9.2.5 Hall resistivity measurements in YbPt0.98In: H‖ab

Based on the low temperature thermodynamic and transport measurements, YbPtIn and

YbPt0.98In can be regarded as Yb-based heavy fermion compounds with long range, possi-

bly reduced moment ordering that can be driven through a field-induced quantum critical

point, similar to the previously studied Yb-based HF systems, YbRh2Si2 (Paschen, 2004) and

YbAgGe (Bud’ko, 2005). In the latter two compounds, Hall effect measurements served as

additional tools for characterizing the QCP and its effects on the finite-temperature properties

of these materials.

In order to further explore the field-induced QCP our Yb-based compounds, field-dependent

Hall resistivity measurements were performed for temperatures up to 300 K. However, the

data on the stoichiometric compound was noisy, given the limited (small) crystal size, and

meaningful Hall resistivity data could only be collected for the solution-grown compound for

H ‖ ab. These measurements are shown in Fig.9.23.

We determined the Hall coefficient RH for YbPt0.98In in the low-field (H < 30 kG) and

high-field (H > 60 kG) regimes, as the slopes of the ρH(H) data shown in Fig.9.23 for various

T. (This alternative definition for the RH(T ) was preferred to dρH / dH due to the scattering

of the data at low fields as seen later in Fig.9.25b). The results are shown in Fig.9.24 on
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Figure 9.23 Field-dependent Hall resistivity for YbPt0.98In (H ‖ ab) for
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µΩ for clarity). The lines represent the phase transitions from
the phase diagram in Fig.9.19; the large diamonds indicate the
ρH minima.
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a semi-log scale. The high-H points (squares) show the expected levelling off of RH(T ) as

T −→ 0, whereas the low-T data appear to have a larger variation with T. At temperatures

higher than 25 K, the two data sets merge (as the ρH(H) data become roughly linear for the

whole field range [Fig.9.23a]). These data indicate that the field-dependent Hall resistivity will

be non-trivial and potentially of interest at low temperatures.
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Figure 9.24 Temperature-dependent Hall coefficient of YbPt0.98In (H
‖ ab), with low-field (open symbols) and high-field (full sym-
bols) points determined as described in the text.

In the field-dependent Hall resistivity measurements shown in Fig.9.23, two possible regimes

can be distinguished: a high-T regime (T > 25 K), where a monotonic (average) decrease with

field can be observed, despite the scattering of the data (Fig.9.23a), and a low-T regime (T

≤ 25 K), for which a minimum in the ρH(H) data appears and sharpens as the temperature

decreases (Fig.9.23b). For T = 5 − 25 K, the Hall resistivity curves show a fairly broad

minimum (Fig.9.23b), marked by the large gray dots, which moves down in field with decreasing

temperature. Below 5 K, this minimum is more and more pronounced, as emphasized by large

dots, and is almost unaffected by the change in temperature.

Coleman et al. (Coleman, 2001) have indicated that RH(C) data (where C is a control
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Figure 9.25 Alternative definitions of the Hall coefficient of YbPt0.98In (H
‖ ab): (a) RH = ρH / H and (b) RH = dρH / dH, measured
at various temperatures. Except for the T = 0.4 K ones, all
other curves are shifted for clarity, by multiples of (a) 0.01
nΩ cm /G and (b) 0.2 nΩ cm /G. The large dots are the ρH

minima shown in Fig.9.23, and the dotted line represents the
cross-over line, determined by the maximum-H on the low field
linear fits (see text).

parameter, i.e., H in our case) can be used to distinguish between two possible QCP scenarios:

diffraction off of a critical spin density wave SDW (manifesting as a change in the slope of

RH(C) at Ccrit) or a breakdown of the composite nature of the heavy electron (signaled by the

divergence of the slope of RH(C) at Ccrit). In our case, it is not clear what definition of the

Hall coefficient should be used for comparison with the theory (i.e., either RH(C) = ρH/H or

RH(C) = dρH / dH) since the magnetic field H is itself the control parameter C. Therefore
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in Fig.9.25 we are presenting the RH(H) curves determined using both of the aforementioned

definitions. When RH(H) = ρH / H (Fig.9.25a), the Hall coefficient is linear up to a field

value which varies non-monotonically with T, as indicated by the dashed line. This line is

shifted to higher field values with respect to the Hall resistivity line (Fig.9.23b), marked here

by the large diamonds. When using the RH(H) = dρH / dH definition for the Hall coefficient

(Fig.9.25b), the maximum-H points on the low-field linear fits could be used as the criterium

for defining the Hall line (indicated by the dotted line).
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Figure 9.26 Revised YbPt0.98In phase diagram (H ‖ ab). The solid lines
correspond to the phase lines from the T - H phase diagram
in Fig.9.19, and the symbols delineate the new phase line as
determined from the Hall resistivity data, using various criteria
as described in the text.

Regardless of what criterium is being used, the Hall measurements define a new phase line,

distinct from any of the ones inferred from either the CP (T,H) or the ρ(H,T) data. Fig.9.26

shows the T − H phase diagram with the phase lines discussed before (lines), also showing

the Hall line inferred from the various definitions (symbols). The line resulting from the

Hall resistivity ρH data (diamonds) seems to persist even below Tord, down to our lowest T.

However, the other two criteria used for the definition of the Hall line (RH(H) = ρH / H or
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Hmax for the linear fit of RH(H) = dρH / dH) mark yet another distinct line, which resembles

more the Hall line observed for either YbRh2Si2 (Paschen, 2004) and YbAgGe (Bud’ko, 2005)

as it appears to converge with the ”coherence” line, and the high-T magnetic ordering phase

boundary, at the QCP, around Hab
c .

9.3 Discussion

For both the YbPtIn and YbPt0.98In compounds a number of similar properties, as well

as systematic differences, could be distinguished. First, the small stoichiometry difference was

apparent from single crystal x-ray measurements, which also resulted in slightly reduced lattice

parameters and unit cell volumes in the YbPtIn system. Furthermore, the resistivity values

were shifted towards higher values in the Pt-deficient compound (Figs.9.2b-9.3) for the whole

temperature (T = 0.4-300 K) and field ranges (H = 0-140 kG) of our measurements. High

enough fields suppressed the magnetic order in both systems, at least for field applied within

the basal plane; in a similar manner to the T-scale in these compounds, the critical field value

was reduced in YbPt0.98In by comparison to the analogous one in YbPtIn. For the c direction,

the field values required to suppress the magnetic order in YbPt0.98In and YbPtIn were close

to, or respectively higher than our maximum available field (i.e., 140 kG); this precluded us

from studying the low temperature properties of the two compounds outside the ordered state,

for this orientation of the field.

However, for H ‖ ab NFL-like behavior occurs in YbPt0.98In for intermediate field values

and above the ordering temperatures, as indicated by the logarithmic divergence of the Cm /T

data (Fig.9.15a) and the linear resistivity (Fig.9.16a). In YbPtIn the NFL region is less clearly

defined, as no linear region could be unambiguously identified in the resistivity (Fig.9.6),

whereas the logarithmic divergence of the specific heat was limited to a small temperature

range by a downturn in the Cm /T (lnT ) data (Fig.9.5) towards high T.

At low temperatures, and for H > Hab
c where a QCP is apparent for each of the two

systems, the FL-like behavior is recovered, as the resistivity shows a ∆ρ ∼ AT 2 functional

dependence, more clearly defined in the Pt-deficient compound than in the stoichiometric one.
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All these observations lead us to believe that, whereas a QCP exists in both compounds around

Hab
c ≈ 35 − 45 kG for YbPt0.98In, and 60 kG for YbPtIn, the small disorder in the former

system in addition to the applied magnetic field induces a NFL regime in this compound, more

clearly than in the latter one.

To further study the nature of the field-induced QCP in the two systems, we analyze the

field dependence of the electronic specific heat coefficient γ, and of the coefficient A in the

∆ρ ∼ AT 2 resistivity.

60 80 100 120 140
0

100

200

300

400

500

600

H||ab

 YbPt0.98In
 YbPtIn

 

 

 (m
J 

/ m
ol

 K
2 )

H(kG)

Figure 9.27 The H ‖ ab field-dependent electronic specific heat coefficient
γ of YbPtIn (open symbols) and YbPt0.98In (full symbols).

The field-dependent electronic specific heat coefficient γ could be estimated at low T,

outside the ordered state, and these values are shown in Fig.9.27. For both compounds, γ(H)

was taken as the corresponding Cm /T value at T ≈ 1.3 K, such as to avoid the low-T upturn in

the highest field data. A drastic decrease of γ (almost an order of magnitude) can be observed

in Fig.9.27 for both compounds, for fields above their respective Hab
c .

The field dependence of the coefficient A of the quadratic resistivity is shown in Fig.9.28a,b

for YbPtIn and YbPt0.98In respectively. A 1 / (H − Hcalc
c0 ) divergence can be observed for

both compounds, with Hcalc
c0 estimated from the fit as 64.4 kG for YbPtIn, and 56.0 kG for
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Figure 9.28 The H ‖ ab T2-resistivity coefficient A as a function of field,
for (a) YbPtIn and (b) YbPt0.98In (symbols); the solid line
represents a 1/ (H − Hcalc

c0 ) fit, from which the expected
critical field values Hcalc

c0 were estimated (see text). Inset: log
plot of A vs. γ (symbols), with a linear fit (solid line) used to
estimate the A / γ2 ratio.

YbPt0.98In. This critical field value for the former system is consistent with the H ‖ ab

specific heat and resistivity data (Figs.9.4-9.9), which suggested that Hab
c ≈ 60 kG. In the

case of YbPt0.98In, where NFL behavior was observed between 35 kG and 45 kG, the critical

field value can only be determined to a range within the above two field values; the Hcalc
c0 ≈ 56

kG determined from the A vs. 1 / (H − Hcalc
c0 ) fit (Fig.9.28b) is within the above field range,

thus consistent with the specific heat and resistivity data (Figs.9.14-9.26).

The proportionality A ∼ γ2 between the resistance coefficient A and the electronic specific

heat coefficient γ is emphasized by the logarithmic plots in the insets in Fig.9.28. In the case of

the YbPtIn compound (Fig.9.28a, inset), the solid line represents the Kadowaki-Woods ratio

A / γ2 ≈ 2.6 ∗ 10−5 µΩ cm / (mJ / mol K)2. Such a value is close to that observed for many

heavy fermion systems (Kadowaki, 1986), but slightly higher than the A / γ2 ratio reported

for YbRh2Si2 (Gegenwart, 2002); this, in turn, was larger than the values observed for most

Yb-based intermetallic compounds (Tsujii, 2003). The corresponding value was larger still

in YbAgGe (Bud’ko, 2004), and it would appear that this is a common feature of Yb-based
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materials with field-induced NFL-like behavior.

When we turn to the Pt-deficient compound (Fig.9.28b, inset), a smaller A / γ2 ratio is

indicated by the solid line: A / γ2 ≈ 0.4 ∗ 10−5 µΩ cm / (mJ / mol K)2. This value is again one

order of magnitude larger than that expected for many Yb-based compounds (Tsujii, 2003),

and several times smaller than the ratio observed for the stoichiometric YbPtIn compound

(Fig.9.28a). In light of observations of suppression of the A coefficient due to site disorder

(Tsujii, 2003; Lawrence, 1985), we may have to consider the A / γ2 ratio for YbPt0.98In as a

reduced value from the enhanced ratio observed for the ordered compound.

9.4 Conclusions

The detailed field- and temperature-dependent measurements presented here allowed us to

confirm that YbPtIn is a heavy fermion compound, as has been presented by Trovarelli et al.

(2000a). In addition, we showed that a field-induced QCP exists in this material, at least for

H ‖ ab, with Hab
c ≈ 60 kG. In addition to the magnetic field used as a tuning parameter,

we showed that a small Pt-deficiency introduced in this system had effects consistent with

positive pressure applied to Yb-based heavy fermion compounds. Thus, in the YbPt0.98In

compound we also see a suppression of the magnetic ordering by applied magnetic field; in

addition, the small disorder also suppresses the ordered state (both Tord and Hc have smaller

values in this compound than the similar ones in YbPtIn), and gives raise to a NFL region

characterized by linear resistivity and logarithmic divergency of the specific heat, as also seen in

the previously studied HF systems with field-induced NFL behavior, YbRh2Si2 and YbAgGe.

As the critical field required to suppress the magnetic order in the c direction appeared to

exceed our maximum field, experiments to higher fields would be desirable in order to extend

the comparison with YbRh2Si2 and YbAgGe to the effects of anisotropy on the field-induced

QCP.
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CHAPTER 10. Summary and conclusions

The present work was initially motivated by the desire to continue the study of complex

metamagnetism in relation to the crystal structure of various compounds; this study already

included tetragonal compounds like HoNi2B2C (Canfield 1997b; Kalatsky 1998) and DyAgSb2

(Myers 1999), in which the rare earths occupy unique tetragonal positions. We intended to find

hexagonal systems suited for such a study, with complex metamagnetic properties, and the

search for extremely anisotropic hexagonal compounds turned into a rewarding exploration.

We identified and grew most of the heavy rare earth members of two isostructural series,

RAgGe and RPtIn, both belonging to the hexagonal Fe2P family of materials. In each of

these series we found one compound, TmAgGe, and TbPtIn respectively, that was suitable for

a simple study of angular dependent metamagnetism: they had three rare earth ions in the

unit cell, positioned at a unique crystallographic site with orthorhombic point symmetry. The

magnetization of both TmAgGe and TbPtIn was extremely anisotropic, with larger values for

the in-plane orientation of the applied field than in the axial direction. Complex metamagnetic

transitions existed for field within the ab-plane, and, similar to the case of the tetragonal

compounds RNi2B2C and DyAgSb2, they depended on the field orientation within the basal

plane. We were thus able to develop a two-dimensional model, the three co-planar Ising-like

systems model, which described well the angular dependence of the metamagnetic transitions

in the TmAgGe and TbPtIn hexagonal compounds. Having three magnetic moments in the

hexagonal unit cell, in orthorhombic point symmetry positions, added to the complexity of

the analysis compared to the case of tetragonal compounds having one rare earth atom per

unit cell, in tetragonal point symmetry. However, the three co-planar Ising-like systems model

yielded complex, but intelligible angular dependencies of the critical fields and locally saturated
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magnetizations for the various metamagnetic transitions observed experimentally. Having

found two systems with different rare earth ions (Tm and Tb) and different ligands (Ag, Ge

and Pt, In) gives us some confidence that this behavior may be generic to the Fe2P-based

compounds, and potentially even more widely applicable. Furthermore, we generalized this

model to a three non-planar Ising-like systems model, in an attempt to understand the nature

of the magnetic order in the non-planar magnetic RPtIn compounds (R = Dy - Tm); even

though a more detailed analysis is needed to optimize it, this three-dimensional model could

also be developed into a useful tool for characterizing hexagonal compounds with orthorhombic

point symmetry of the rare earth site.

In addition to these extremely anisotropic compounds, the R = Yb members of each of

the aforementioned series proved to be heavy fermion HF compounds; the apparently small or

reduced moment ordering in YbAgGe and YbPtIn corresponded to an increase in the ordering

temperature from 1 K in the former system, to 3.4 K in the latter one. In addition, a small Pt-

deficiency in YbPtIn yielded a very different transition temperature (∼ 2.1 K) in the flux-grown

YbPt0.98In compound. In all three compounds a field-induced QCP was observed; for the two

flux-grown ones (i.e., for YbAgGe and YbPt0.98In), signatures of field-induced NFL behavior

could also be identified, which were less obvious in the YbPtIn compound. A remarkable

feature of the YbAgGe compound is the extended relevant field- and temperature-ranges are

enhanced compared to YbRh2Si2 (Trovarelli, 2000b; Gegenwart, 2002; Ishida, 2002; Paschen,

2003; Paschen, 2003), making the physical properties of this compound experimentally more

accessible, and the extended T = 0 non Fermi liquid-like regime. These observations made

YbAgGe and YbPtIn extremely interesting. Once more, having two examples of isostructural

heavy fermion materials, with very different ligands (which greatly affect the hybridization in

these systems) allowed us to analyze their individual properties, and also to compare similar

effects in compounds with very different ligands. Moreover, having YbPt0.98In single crystals,

in addition to the stoichiometric YbPtIn, offered the possibility of analyzing the effect of

disorder on its properties in comparison to those of the stoichiometric system.

We can thus conclude that the RAgGe and RPtIn series of compounds presented in this
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work cover a rich spectrum of physical properties. The anisotropy and metamagnetism are

particularly interesting in light of the crystal structure of these compounds, a hexagonal unit

cell with unique rare earth site in orthorhombic point symmetry. The four position clock model

(Kalatsky 1998) developed for tetragonal systems with the magnetic moments in tetragonal

point symmetry, together with the three Ising-like systems model for hexagonal unit cell with

moments in orthorhombic point symmetry, should provide useful tools for further studies of

metamagnetism in other systems with planar symmetry. Further work should be devoted to

finding tetragonal compounds with rare earths in orthorhombic point symmetry, which might

be similar to TmAgGe and TbPtIn, or hexagonal systems with the magnetic moments occu-

pying unique trigonal or hexagonal point symmetry positions, with the latter resembling more

HoNi2B2C and DyAgSb2. Also, more detailed measurements and a more complex version

of the three non-planar Ising-like systems model might further our understanding of meta-

magnetism in less anisotropic compounds. Finally, it is desirable to continue the search for

Yb-based heavy fermion compounds, given the limited number of existing stoichiometric such

systems, in which QC phase transitions and NFL behavior can be induced by the application

of magnetic field.
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Hadz̆ić-Leroux, M., A. Hamzić, A. Fert, P. Haen, F. Lapierre and O. Laborde, Europhys. Lett.

1 579 (1986).

Heuser, K., E.-W. Schneidt, T. Schreiner and G. R. Stewart, Phys. Rev. B 58 R15959 (1998).



262

Hewson, A.C., The Kondo Problem to Heavy Fermions, Cambridge University Press, Cam-

bridge UK (1997).

Hundley, M. F., A. Malinowski, P. G. Pagliuso, J. L. Sarrao and J. D. Thompson (cond-

mat/0402076) (2004).

Hurd, C. M., he Hall Effect in Metals and Alloys, Plenum Press, New York and London, (1972).

Hutchings, M. T., Solid State Phys. 16, 227 (1964).

Ishida, K., K. Okamoto, Y. Kawasaki, Y. Kitaoka, O. Trovarelli, C. Geibel and F. Steglich,

Phys. Rev. Lett 89 107202 (2002).

Iwata, N., K. Honda, T. Shigeoka, Y. Hashimoto and H. Fujii, J. Magn. Magn. Matter. 90-91

63 (1990).

Jensen, J. and A. R. Mackintosh, Rare Earth Magnetism (Oxford University Pres, Oxford)

1991.

Kaczorowski, D., B. Andraka, R. Pietri, T. Cichorek, V. I. Zaremba, Phys. Rev. B. 61 15255

(2000).

Kadowaki, K. and S. B. Woods, Solid State Commun., 58 507 (1986).

Kalatsky, V. A. and V. L. Pokrovsky, Phys. Rev. B 57 5485 (1998).

Kasuya, T., Progr. Theor. Phys. 16 45 (1956).



263

Katoh, K., Y. Mano, K. Nakano, Y. Niide and A. Ochiai, J. Magn. Magn. Matter. 268 212

(2004).

Knopp, G., A. Loidl, R. Caspary, U. Gottwick, C.D. Bredl, H. Spille, F. Steglich and A. P.

Murani, J. Magn. Magn. Mater. 74 341 (1988).

Koerner, S., E.-W. Schneidt, T. Schreiner, K. Heuser and G. R. Stewart, J. Low Temp. Phys.

119 147 (2000).

Kondo, J., Prog. Theor. Phys. 32 37 (1964).

Kurisu, M., T. Takabatake and H. Fujii, J. Magn. Magn. Matter. 90-91 469 (1999).
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Müllmann, R., B. D. Mosel, H. Eckert, G. Kotzyba and R. Pöttgen, J. Solid State Chem 137

174 (1998).

Myers, K. D., P.C. Canfield, V.A. Kalatsky and V.L. Pokrovsky, Phys. Rev. B 59 1121 (1999a).

Myers, K. D., S. L. Bud’ko, I. R. Fisher, Z. Islam, H. Kleinke, A. H. Lacerda and P. C. Can-



265

field, J. Magn. Magn. Mater. 205 27 (1999b).

Narozhnyi, V. N., V. N. Kochetkov, A. V. Tsvyashchenko and L. N. Fomicheva, Solid State

Comm. 109 549 (1999).

Nimori, S., G. Kido, D. X. Li, Y. Haga and T.Suzuki, J. Magn. Magn. Mater. 140-144(2)

1167 (1995).

Noakes, D.R. and G.K.Shenoy, Phys.Lett. 91A 35 (1982).

O’Handley, R. C., in C. L. Chien and C. R. Westgate (Eds.): The Hall Effect and Its Applica-

tions, Plenum Press, New York and London, 417 (1980).

Olesinski, R.W. and G.J. Abbaschian, Bull. Alloy Phase Diagrams 9(1), (1988).

Overhauser, A. W., Phys. Rev. Lett. 3 414 (1959).

Pamplin, Brian R., Crystal Growth, Pergammon Press Ltd,. Oxford, (1975).

Paschen, S., T. Luehmann, C. Langhammer, O. Trovarelli, S. Wirth, C. Geibel and F. Steglich,

Acta Phys. Pol. B 34 359 (2003).

Paschen, S., T. Luehmann, S. Wirth, P.Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P.

Coleman and Q. Si, Nature 432 881 (2004).

Pogorelov, Y. G. and V. R. Shaginyan, Pis’ma Zh. Exp. Teor. Fiz. 76 614 (2003) [JETP

Lett. 76 532 (2003)].



266
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Takayanagi, S., Y. Õnuki, K. Ina, T. Komatsubara, N. Wada, T. Watanabe, T. Sakakibara

and T. Goto, J. Phys. Soc. Jpn. 58 1031 (1989).



267

Takimoto, T. and T. Moryia, Solid State Commun. 99 457 (1996).

Taylor, K. N. R. and M. I. Darby, Physics of Rare Earth Solids, Chapman and Hall, London,

(1972).

Thompson, J.D. and J.M.Lawrence,in: K.A.Gschneidner (Ed.), Handbook on the Physics and

Chemistry of Rare Earths, 19 (Elsevier, Amsterdam) 383 (1994).

Trovarelli, O., C. Geibel, R. Cardoso, S. Mederle, R. Borth, B. Buschinger, F. M. Grosche, Y.

Grin, G. Sparn, F. Steglich, Phys. Rev. B 61 (2000a), 9467.

Trovarelli, O., C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang,

G. Sparn and F. Steglich, Phys. Rev. Lett 85 626 (2000b).

Tsvelik, A. M. and M. Reiser, Phys. Rev. B 48 R9887 (1993).

Tsujii, N., K. Yoshimura and K. Kosuge, J. Phys: Condens. Matter 15 1993 (2003).

Umeo, K., K. Yamane, Y. Muro, K. Katoh, Y. Niide, a. Ochiai, T. Morie, T. Sakakibara and

T. Takabatake, J. Phys. Soc. Jpn., 73 537 (2004).

Wang, Y. L., Phys. Lett. A 35 383 (1971).

Watson, K. C, J. Crangle, K.-U. Neumann and K.R.A. Ziebeck, J. Magn. Magn. Matter.

140-144 883 (1995).

Wilson, K. G., Rev. Mod. Phys., 47 773 (1975).



268

Yamaguchi, Y., J. Sakurai, F. Teshima, H. Kawanaka, T. Takabatake and H. Fujii, J. Phys:

Cond. Mat., 2 5715 (1990).

Yatskar, A., N.K. Budraa, W.P. Beyermann, P.C. Canfield and S.L. Bud’ko, Phys. Rev. B 54

R3772 (1996).

Yoshii, S., K. Kindo, K. Katoh, Y. Niide, A. Ochiai, J. Magn. Magn. Matter. 272-276 e99

(2004).

Yoshimori, A., J. Phys. C 15 5241 (1976).

Yosida, K., Phys. Rev. 106 893 (1957).

Zaremba, V. I., Y. V. Galadzhun, B. D. Belan, A. Pikul, J. Stepien-Damm, D. Kaczorowski,

J. Alloys Comp. 316 64 (2001).

Ziman, J. M., Electrons and Phonons, Oxford University Press, Oxford (1967).



269

Acknowledgements

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University

under Contract No. W-7405-Eng.-82. This work was supported by the Director for Energy Re-

search, Office of Basic Energy Sciences. Work at NHMFL - Los Alamos Facility was performed

under auspices of the National Science Foundation and the U.S. Department of Energy.


